

Yebes Laser Ranging Station (YLARA) **Development Status 2019**

B. Vaquero Jiménez, J.A. López Pérez, J.A. López Fernández, P. de Vicente

Yebes Observatory, Technology Development Center. Instituto Geográfico Nacional (Spain)

YLARA OBJECTIVES AND BASIC DESIGN

Main Objective: Observations to satellites equipped with retro-reflectors (mainly geodetic satellites and GNSS), turning Yebes Observatory into a Geodetic Fundamental Station

- Yebes Observatory, Guadalajara
 - 915 m height, good sky visibility
 - Mean of average speed 5.8 km/h
 - Mean of maximum speed 32 km/h

Site infrastructure

- Building
- 75-110 m²
- Control and Coudé/laser room, AC/electricity room, toilet, warehouse space, dome access, roof access
- Foundations and piers • Isolated from the building

Basic Subsystems

- Telescope and mount
 - Biaxial telescope, AZ-EL mount, several foci
 - Receiving system 50-80 cm
 - Transmitting system 7-15 cm
 - Beam pointing accuracy 1-5"
 - High slew rate
 - Minimum tracking elevation 10° 15°
 - Two possible configurations: Coudé path and piggyback solution
- Dome
 - 4-6 m diameter
 - Slit-type
- Time and frequency system: H-Maser (EFOS_C, T4 Science SA), GNSS Synchronization system (Meinberg Lantime M3000)

• Near the main road \Rightarrow easy access Near offices and laboratories buildings

Future YLARA Station Location

• Invariant point AZ/EL intersection

• Network extrapolation <1 mm

• Other applications / Improvements

• Space debris observations

- - Satellites observations from 300 42.000 km (night and day)
- Fulfilling GGOS requirements
- Fulfilling ILRS Pass Performance Standard
- Modular and flexible design

Riga ET and Lantime M3000

- Laser subsystems
 - Transmitting laser system
 - Repetition rate \geq 1000 Hz (adjustable)
 - Pulse width < 25 ps
 - Wavelength 532/1064 nm (Nd:YAG Nd:Van)
 - Energy 0.5 5 mJ
 - Adapted optic to 532 and 1064 nm (laser wavelengths)

Local tie integration

• 2 new pillars

- Detection package
 - CSPAD (QE 30%), telescope location
 - CCD Camera
 - Flexible to add other detectors
 - Field of View 10-60"
 - Daylight filter bandwidth 0.15-0.5 nm

- Anchored to bedrock
- For the telescope mount and optical benches
- Free inner space for Coudé path elements and access
- Electrical power station: 230/400 VAC, 50 Hz, SAI included, AC system
- Geotechnical drilling has been performed
- Power, water and data connections available

Station Control and Software

- General requirements
- Command and control of all station hardware and security components in real-time.
- Ability to support a wide range of hardware types and configurations: telescope, laser, range gate, detectors, dome, weather station, security systems, time and frequency systems...
- Intuitive user interface to monitor and perform all SLR operations.
- Possibility of introducing easily new

- Sky security and station safety: Radarcape ADS-B, FLARM AT-1 receiver, OMEA-8C all sky camera, Boltwood could sensor
- Meteorological sensors: temperature, humidity and pressure sensors, rain detector, pyranometer, etc.

Sky security (aircraft detection) and station safety

Calibration system: accuracy < 1mm

- Range Gate Generator: 50-1000 ns width
- Event timer: Riga A033-ET/USB.
 - Resolution 3-4 ps / Precision \approx 5 ps
- Laser safety: glasses, warning signs, secure windows and doors, warning lights, SW and HW on/off control, etc.

modules and functionalities. Ability to extend the software in a future to carry out completely automatic observations and for the realization of observations of space debris.

Semi-autonomous operation of the SLR station

ERDF FUNDS – ICTS INFRASTRUCTURES

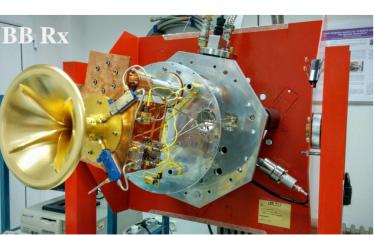
Yebes Observatory is one of the Singular Scientific and Technological Infrastructures (ICTS) in Spain, and the only one in the Castilla-La Mancha Region

ERDF Funds, Operational Programme \Rightarrow 2014-2020 Ministry Growth Smart of Economy, Industry and Competitiveness of **Spain** (FICTS1420-11-12)

 \Rightarrow **Operation:** Development Infrastructures and Laboratory Activities for Space Geodesy at Yebes Observatory (YDALGO)

YLARA station working plan	2018			2019				2020				2021				2022				
Building and site infrastructures			X	X	X	X	X	X	X	X	Х	X	X	X	X	X				
Telescope system and dome					Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	X
Time and frequency subsystems			X	Х	Х				X	Х	Х	Х	Х	Х						
Security systems and sky monitoring			X	Х	Х				X	Х	Х	Х	Х	Х						
Optical Subsystem (laser, detector, etc.)						Χ		Χ	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	X	X
Measurement System (RGG, ET, etc.)			X	Х	Χ	Χ	Χ	X	X	Х	Х	Х	Х	Х	Χ	Χ				
Software package and control systems					X	X	Χ	X	X	Χ	Х	X	Х	Х	Χ	X	Χ	Χ	X	X
System Engineering, Integration and Commissioning									X	X	X	X	X	X	X	X	X	X	X	X
Technical and Scientific Management and Quality Assurance					X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Promotion			X	Х	Χ	Χ	Х	X	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	X
Staff (2 engineers)						X	Χ	X	Χ	Χ	X	X	X	Х	Х	X	Χ	Х	Х	X

YEBES OBSERVATORY OVERVIEW



13.2 m VGOS Radio Telescope

CORE SITE STATUS - AVAILABLE TECHNIQUES

Gravimetry pavilion

- Broadband Receiver (from 2 to 14 GHz)
 - Dual lineal polarization, noise temperature under 25 K
 - Using a quadruple-ridged flared horn (QRFH) from Caltech
 - Installed in February 2016 for VGOS Broadband observations
- Yebes Low Noise Amplifiers: broadband for VGOS
- Signal conditioning modules for backends (Yebes design)
- Phase and noise calibration modules (Yebes design)

GNSS Receivers

Spanish Network ERGNSS

EUREF Permanent Network

Local tie

- The complete network is composed by 24 vertex including on it the radio telescopes and the GNSS antennas.
- Pillars are made of concrete and iron and compose by a 30 cm diameter cylinder inside a protector tube
- Network accuracy below 1 mm

- Seven pillars for instrument installation and intercomparisons
- Two absolute gravimeters (A10 & FG5)
- OSG Superconducting gravimeter (Feb 2012)
- Participation in IGETS International Geodynamics and Earth tide Service
- One SILEX Accelerometer

