

The Birth and Future Of Lunar Laser Ranging by **Professor Douglas Currie Department of Physics** University of Maryland, College Park with MEng. Giovanni Delle Monache INFN-LNF Dr. Bradford Behr UMCP Dr. Simone Dell'Agnello INFN-LNF Dr. Chensheng Wu UMCP

Outline

- Overview of Why We Want to do Lunar Laser Ranging
- Pre-History of Professor Bob Dicke's Group at Princeton
- Preparation for Science on Apollo 11 by NASA
- Preparation and Development of Retroreflector Array for Apollo 11
- Development of Lunar Laser Ranging Observatories
- Science Results from Our LLR Observations
- Current Limitations to the Ranging Accuracy
- Advantages and Design of NGLR formerly LLRRA-21
- Fabrication, Deployments and Flights for NGLR
- Science for NGLR

First Why

Should We Embark Such A Complicated and Risky Journey

24 October 2019

- Twenty Years Ago
 - We Knew All About the Contents of the Universe
- Vera Rubin
 - Stars do not Rotate "Properly" about the Galactic Center
 - Do Not Know Why, but We Call the Phenomena "Dark Matter"
- Perlmutter, Schmidt & Riess
 - Distant Galaxies Were Moving Away from Us Too Fast
 - Do Not Know Why, But We Call that Phenomena "Dark Energy"
- Something Strange Seems to be Going on With Gravity
- Cannot Fit General Relativity into Quantum Mechanics

borstori Nazîmalî di

74% DARK ENERGY

22% DARK MATTER

3.6% INTERGALACTIC GAS 0.4% STARS, ETC.

General Relativity vs. Quantum Mechanics

JHIVERS/7 Theories of Gravitation

laboratori Nazimali di Frescat

Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Newton 1686

- Einstein & Fokker 1914 Einstein 1915 Whitehead 1922 Cartan 1923 Kaluza & Klein 1932 \bullet
- Milne 1948 Thiry 1948 Fierz & Pauli 1939 Birkhoff 1943 Papapetrou 1954 Jordan 1955 \bullet
- Littlewood & Bergmann 1956 Brans & Dicke 1961 Yilmaz 1962 Whitrow & Morduch 1965 ullet
- Kustaanheimo & Nuotio 1967 Page & Tupper 1968 Bergmann 1968 Deser & Laurent 1968 \bullet
- Wagoner 1970 Nordtvedt 1970 Bollini et al. 1970 Rosen 1971 Will & Nordtvedt 1972 ullet
- Hellings & Nordtvedt 1972 Ni 1973 Yilmaz 1973 Lightman & Lee 1973 Ni 1972 \bullet
- Belinfante & Swihart 1975 Lee, Lightman & Ni 1974 Rosen 1975 Lee et al. 1976 \bullet
- Rastall 1979 Bekenstein 1977 Barker 1978 Coleman 1983 Hehl 1997 \bullet
- Some authors proposed more than one theory, e.g. Einstein, Ni, Lee, Nordtvedt, Yilmaz, \mathbf{O}
- Some theories are just variations of others •
- Some theories were proposed in the 1910s/20s; many theories in the 1960s/70s \bullet
- Overlooked: this is not a complete list! Essentially, this ends before Dark Matter and Dark Energy ullet
- Theory must be: ullet

18

- Complete: not a law, but a theory. Derive experimental results from first principles ullet
- get same results no matter which mathematics or models are used - Self-consistent: •
- Relativistic: Non-gravitational laws are those of Special Relativity •
- Newtonian: Reduces to Newton's equation in the limit of low gravity and low velocities

24 October 2019

Se Early Aspects & Motivation Istitute Nazion

- Historically, the Orbit of the Moon and Its Distance
 - Has Been Studied for Millennia
 - Navigation
 - Eclipse Prediction
 - Tidal Tables
- During the Last Millennium
 - GR Tests have Become an Important Part of Physics
 - Fundamental Incompatibility of QM and GR
- Later, Issues of the Internal Structure of the Moon
 - Again as It Relates to the Lunar Formation Question
 - Hints for the Physics of Planetary Formation

- Astronomical Determination
 - Early Greek 270 BC
 - About 386,243 km 5%
- Radar Ranging
 - 1959 USNO 150 m
- Optical Ranging
 - 1962 MIT 1 ms Few Kilometers
- Lunar Orbiting Space Craft
- Problem:
 - Not Accurate Enough for General Relativity Test

© Dan Long 2014

Not Accurate Enough to Quantify the Structure of the Lunar Interior

- Initial Experimental Predictions by Einstein
 - Precession of the Perihelion of Mercury
 - Bending of Light about Massive Bodies 1919
 - Gravitational Redshift 1959
- Loránd Eötvös Laboratory Experiments
 Weak Equivalence Principle (WEP)
- Joe Weber at the University of Maryland
 - Conceptualization of Gravity Wave Measurem
 - Early GW Observations with Bar Antennae

STUDER SITU State of Dicke Groups of Dicke Gr

- Professor Robert Dicke of Princeton University
 - Early Interest in Tests of General Relativity
 - Measured the Gravitational Red Shift
 - Investigated the Precession of Mercury
 - Scalar-Tensor Brans-Dicke Alternative to General Relativity
- Considered Ranging to the Surface with Spotlight
 - Insufficient Accuracy Ranging from the Surface
 - Insufficient Signal Outgoing Beam was too Broad
- In the 1960's Two Great Leaps Forward
 - Ted Maiman Invented and Demonstrated the Laser
 - John Kennedy said "We are Going to put a Man on the Moon"
- Finally, Measurements of Sufficient Accuracy
 - Could Finally, In Principle, be Accomplished!!!

Laser Ranging & Retroreflectors

- Illuminate Moon with a Short Coherent, Narrow Laser Pulses
- "Normal" Diffuse Reflection from Lunar Surface
 - Radiation Goes into 2 Pi Steradians
 - Great Loss of Signal
- Need a "Directed" Return Back to the Observatory.
- Could Use a Flat Mirror
 - Needs to be Actively Very Precisely Pointed
 - To Only One LLR Observatory at One Time
 - Mechanical/Electrical Components
 - Cannot Last 50 years
- Retroreflector
 - Solid "Cube Corner" of Glass

Preparation for Apollo 11 Science

- ALSEP Major NASA Science Project for the Manned Landing
 - Starting About Two Years Before Launch
 - Major Suite of Scientific Instruments
 - Defined For All Apollo Missions Through Apollo 16
- Astronauts Began To Practice for Apollo 11 EVA
 - Using the ALSEP 11 Scientific Suite of Experiments
 - Only Short Time on the Surface
 - Not Enough Time to Deploy All Experiments
 - Surface Conditions Unknown
 - Tommy Gold Had Said That We Would Sink 30' in the Lunar Dust
- NASA Looks for Replacement Suite of Experiments

ALSEP to ELSEP

- NASA Requests Experiments for ELSEP
 - Early Apollo Scientific Experiments Payload
 - Easy to Deploy
 - Light or No Power Requirements
 - Light or No Communication Requirements
- Initial Feasibility Calculations for Lunar Laser Ranging
 - Performed by Bob Dicke's Group at Princeton
 - Had Been Considering Possibilities for Some Time
- Proposal for Apollo 11 LLR in the ELSEP Submitted to NASA
 - 9 Months before Launch
- NASA Accepted Our Proposal for Retroreflector Arrays for Apollo 11

Proposal and LURE Group Istitute Nazio

- Robert H. Dicke Princeton University
 - GR Tests, Microwave Technology, Cosmic Microwave Background Radiation (CMBR)
- Carroll O. Alley University of Maryland, College Park
 - Principal Investigator, Atomic Physics, General Relativity Tests
- Peter L Bender JILA University of Colorado Boulder
 - Detection of Gravity Waves in Space LISA
- David T. Wilkinson Physics Princeton University
 - The Leader in the Cosmic Microwave Background Radiation (CMBR)
- James E. Faller Physics Wesleyan University
 - Cube Corner Retroreflectors, Absolute Gravimeters

Proposal and LURE Group

stituto Nazionale Il Fisica Nucleare

- Milliam M. Kaula IGPP University of California, Los Angeles
 - Space-Based Geodesy using Satellite Orbits
- Gordon J. F. MacDonald MIT, UCLA, UCSB, Dartmouth and UCSD
 - Geophysicist, Environmental Scientist, Continental Drift
- Henry H. Plotkin GSFC UMBC
 - Started the Field of Satellite Laser Ranging
- James G. Williams JPL
 - Expert on Processing Ephemris Data and Extracting The Science
- J. Derral Mulhollond JPL
 - Lunar Ephemeris
- Douglas G. Currie Physics University of Maryland, College Park
 - Lunar Laser Ranging, Hubble Space Telescope, Stellar Interferometry

NERSITA 18 56 ARYLAN

Science Objectives

- Many Science Objectives
 - Too Many for My Allocated Time
- Galileo's Apocryphal Experiment
 - Weak Equivalence Principle (WEP)
 - Rate that the Earth and Moon Fall to the Sun
- Structure of the Lunar Interior
 - Crustal Response to Tide
 - Internal Structure from the Crust to Core
- Testing of General Relativity
 - Brans-Dicke Theory

ILRS Technical Workshop 2019 Stuttgart, Germany •

Galileo

Old idea

Preparation for Apollo

- Carroll Alley at the University of Maryland Takes the Lead
 - We at UMCP were Close to NASA Hdqrs and GSFC
 - Very Short Time for Development, Evaluation, Fabrication and Blessing
- Selected an Array of 38 mm Solid Cube Corner Reflectors
 - To Survive the Solar Heat Load Effects We Chose Uncoated (TIR) CCRs
 - With Ren-Fang Chang, We Made the First Analysis of a CCR Using TIR
- Carroll, Harry Krielmeyer, Jim Faller and Myself
 - Were Called Down to the Cape
 - To Give "Deployment Instructions" to Buzz Aldrin,
 - Of Course, He Had a Book an Inch Thick on How to Do It

LLR/Retroreflector Propesation Nucleare

- Final Proposal to NASA for Apollo 11 Retroreflector Array
 - Proposal Delivered ~ 9 months Before Launch
 - Very Short Time for Preparation
- Proposal Reviews
 - Cannot Perform Single Photoelectron Detection
 - We Had Been Doing It for Years So This Was Not an Issue
 - Cannot Point a Laser to the Required 1 arc-second Accuracy
 - We Had Laser Pointing Experience Henry Plotkin was Already Laser Ranging to Satellites
 - But Plotkin Used Much Wider Laser Beams
 - To Range to LEO Satellites Which Are Far Closer Than the Moon
 - Coincidently I Had Been Calculating Whether the Astronauts Could See Our Laser
 - No Due to Anomalies of the Way the Human Eye Detects Faint Point Pulses of Light
 - But Surveyor 7 Was About to be Launched to the Moon
 - This Would Be a Camera on the Lunar Surface
 - Perhaps It Could See a Laser Transmitted from Earth

Surveyor 7 Experiment

- Surveyor 7 Was to be Launched in Just Few Days
 - This was to be the Last Surveyor
- Revision of My Calculation Indicated Surveyor Could See a Laser
 - Using a CW Argon Laser Instead of the Pulsed Ruby Laser
- COA and I Went to the Surveyor Science Team
 - To Get Permission to Point a Laser at the Surveyor Camera
 - They Were Assembled for Meeting at the Cape for the Launch
 - After Our Presentation, They Oked the Experiment
- Assembled Collaborators to Project the Lasers
 - McMath Telescope at Kitt Peak Jim Brault
 - Wesleyan University Jim Faller
 - Table Mountain Observatory of JPL Mike Shumate
 - Another Group in New England

18

McMath Telescope Operation National And Pressors

- Surveyor 7 is Launched While We Are at the Cape
- Jim Brault and I Met at Kitt Peak
 - We Crawled Over the McMath Telesclope
 - To Determine What Hardware Would be Required
 - Flying Back to UMCP
 - We Built the Hardware in 36 hours
 - Shipped the Hardware to McMath
 - Installed Hardware in the Telescope
 - Ready on Arrival of Surveyor 7 at the Moon
- McMath Personnel for Operations
 - Jim Brault Responsible for McMath
 - Sherman Poultney UMCP
 - Eric Silverberg UMCP
 - ILRS Technical Workshop 201 Stuttgart, Germany

reparatory for LL Ranging Istitute R THE REFERENCE OF THE REPARATORY FOR THE REPARATORY IN THE REPARA

- The Surveyor 7 Camera Was Operated from JPL
 - We Pointed the Camera Toward Earth
 - Image of Earth Showing Day and Night Portions
 - Four Stations Pointed Lasers Toward Surveyor
 - Laser Detections of McMath and Table Mountain
 - Eastern Stations Were in Twilight
- Life Magazine Covered with a Nice Article
- Demonstrated that Sufficiently Accurate Pointing
 - Could Be Achieved
 - Useful Definition of Good Approaches for McDonald

- Arthur D. Little Peter Glaser PDR
 - Analysis of Expected Returns
 - Confirming LURE Analysis for Optical Behavior
 - Thermal Modeling of Signal Return
 - Impact of 250K Temperature Swings Over the Lunar Cycle
 - Preliminary Detailed Hardware Designs
- Perkin Elmer Paul Forman Zygo
 - Fabrication of Cube Corner Retroreflectors
- Bendix CDR
 - Responsible for Fabrication of Flight Hardware
 - Responsible for the Interfaces with NASA
- Apollo 11 Movie

The Preparation of the Lunar Package Is On the Way

But We Need Ground Stations To Perform the Ranging

24 October 2019

LLR Observatories

INFN Istituto Nazionale di Fisica Nucleare Isabarabori Naziamalfeli Fressent

- We Need Lunar Laser Ranging Observatories
 - Carroll and I Made Visits to Several Candidate Observatories
 - 60-inch Telescope at AMOS on Maui, Hawaii Scheduling Problems
 - 120-inch Telescope at Lick Observatory on Hamilton Mountain, California Backup
 - 107-inch Telescope at McDonald Observatory at Fort Davis, Texas Primary
- Developing & Deploying Hardware for LLR Observatory
 - Goddard Space Flight Center Provided the Laser
 - Henry Plotkin
 - University of Maryland, College Park
 - Carroll Alley, Doug Currie, Sherman Poultney etc.
- Installation at Observatory and Initial Operation

LLR at McDonald Observatory

UN IIN Istituto Nasionale di Pisica Nusicare saston Nasionali Passeni

- McDonald Observatory
 - Mt. Locke, Fort Davis Texas
- Regular Operation
 - Configured for the Next Decades
- Other Stations
 - Lick Observatory, Mt. Hamilton, CA Initial Acquisition
 - Crimea, Soviet Union Initial
 - French MeO at Côte d' Azur, France Long Term
 - APOLLO at Apache Point, NM
 - MLRO Station in Matera, Italy
 - Wettzell SLR Station in Bad Koetzting , Germany

Operating Personnel

© Dan Long 2014

- University of Maryland
 - Doug Currie
 - Eric Silverberg
 - Sherman Poultney
 - Charlie Steggerda
 - John Mullendore
 - John Raynor

- University of Texas
 - Brian Warner
 - Wayne van Citters
 - Bernie Bopp
 - Don Wells
 - Mike McCants
- GSFC
 - Windell Williams
 - Robert Gonzales

So Much for Getting LLR Started

Has There Been Anything to Show for All This Effort?

24 October 2019

Current Science

•	Equivalence principle parameter	η		(6 ± 7) . 10−4
•	Metric parameter	γ – 1		(4 ± 5) . 10-3
•	Metric parameter	β – 1: direct	measurement	$(-2 \pm 4) \cdot 10-3$
•	Time-varying gravitational constant 'G/G (year-1)			(6 ± 8) . 10-13
•	Differential geodetic precession	LongΩGP -ΩdeS	Sit (per century)	(6 ± 10) . 10-3
•	Yukawa coupling constant	α (for	λ =4 · 105 km)	(3 ± 2) . 10-11
•	"Preferred-frame" parameter	α1		(-7 ± 9) . 10-5
•	"Preferred-frame" parameter	α2		(1.8 ± 2.5) . 10−5
•	Special relativistic parameters	ζ1 – ζ0 – 1		(-5 ± 12) . 10-5
•	Influence of dark matter	δαgalactic (cm	(s-2)	(4 + 4) 10 - 14

from Juergen Mueller and Franz Hofmann

- LLR Currently Provides our Best Tests of:
 - The Strong Equivalence Principle (SEP)
 - -Time Rate-of-Change of G
 - -Inverse Square Law, Deviation of 1/r
 - Gravito-Magnetism
 - -Weak Equivalence Principle (WEP)

Science Objectives

- Galileo's Apocryphal Experiment
 - With the Leaning Tower of Pisa
 - Rate that the Earth and Moon Fall to the Sun
- Structure of the Lunar Interior
 - Crustal Response to Tide
 - Interior Structure from Crust to Core
- Testing of General Relativity
 - Brans-Dicke Theory
- Earth Science
 - Continental Drift
 - Length of the Day

ILRS Technical Workshop 2019 Stuttgart, Germany

•

- Experimental Verification of the WEP
 - Eötvös/Dicke Measurements
 - Compared the Acceleration of Different Materials
 - All Laboratory Experiments
- Lunar Laser Ranging Measurements
 - Massive Astronomical Bodies Earth and Moon
- LLR Measures Inertial Properties
 - Of Gravitational Energy
 - Unique

Why Deploy New Retroreflectors?

24 October 2019

LIBRATION PROBLEM

- Why is There a Problem with the Apollo Arrays
 - Lunar Librations in Tilt Both Axis by 8/10
 - Apollo Arrays are Tilted by the Lunar Librations
 - Corner CCRs can have Different Ranges
 - As large as 200 mm for the Apollo 15 array

Next Generation Lunar Retroreflector

© Dan Long 201

- NASA Has Selected the UMCP to Create 3 NGLRs
- To Be Deployed On the Lunar Surface in 2021
 By Un-Mannered Commercial Carriers
- NGLR Eliminates Libration Problem
- Supports Improved Ranging Accuracy
 - By Up to a Factor of 100 for Each Shot
 - Depends Upon the LLR Observatory Hardware
 - Better Understanding of the Earth's Atmosphere

Flight by Copmercial Carlier

laboratori Nazionali di Frascati

Future Progress

© Dan Long 2014

What is Needed To Achieve the Greater Accuracy

24 October 2019

56 Improved Ground Stations

- Need Advanced Hardware to Reach 1 mm per Shot
 - And Beyond If We Can Conquer the Atmospheric Wedge Problem
- Ideally a LLR Observatory Might Have
 - 20 ps laser
 - Electronic and Timing System with 10 ps jitter
 - Meteorological and Geophysical Stations for Calibrations
 - Better Local Range Predictions to Set Range Gate
 - Tight Range Gate To Control of Full Moon and Day Sky Noise
- For Example At the Wettzell SLR Station
 - Currently ~150 mm Single Shot Offsets at High Libration Angles
 - 10 ps Laser and Appropriate Electronics Implies <1 mm/shot
 - Single Shot Precision Improved by a Factor of ~100 for High Libration Angles
 - Even Better Normal Point Accuracy if the Atmospheric Wedge Angle is Known

Better Atmospheric Modeling Nazional

Wedges in Atmosphere are the Current Ultimate Limit

- Currently We Measure Pressure, Temperature and Humidity Locally
- Acceptable Spherical Correction if Moon is Directly Overhead
- Never Happens
- At 40 degrees, We Are Sensitive to Changes Over ~7 kilometers
- Errors of a mm or so
 - E. Pavlis and G. Hulley
 - Typical Observations at 40 degrees Due to Latitude of LLR Observatories
- Possible Use Local Met Data to Model the Wedge
 - Various Studies of This Are in Progress
- Possible Direct Instrumental Measurements of Zenith Wedge
 - Two Color Refractometer at UMCP
- Better Knowledge of the Wedge is Even More Important
 - For Low Elevation SLR Observations

18

Future Science

- What Explains the "Dark Matter" Observations?
 - Modification of the Gravitational Theory
 - MOND Theories
 - As Yet Unknown Particles
- Internal Lunar Structure
 - Support of Our Proposed Lunar Geophysical Network Program
 - We Have Just Received the Award of a Study Contract
- Further Tests of General Relativity
 - Conflict of Quantum Mechanics and GR

Thank You! any Questions? or Comments?

with Special Acknowledgements to NASA Lunar Science Sorties Opportunities NASA Lunar Science Institute Italian Space Agency INFN-LNF, Frascati LSSO Team LUNAR Team & NGLR Team

currie@umd.edu 301 412 2033