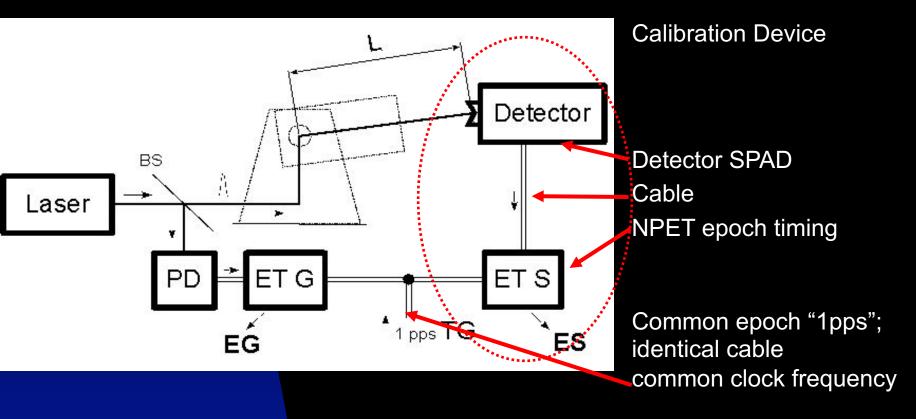
Identification and calibration of one - way biases in SLR system

JČEN[°] TECHNICKE / PRAZE

I. Prochazka

Presented at


One-day Introductory and Refresher Course ILRS Technical Workshop 2019, Stuttgart, Germany October 20. 2019

¹Czech Technical University in Prague, Prague, Czech Republic

Why should we do it ?

- As a standard for 50 years the SLR system is calibrated by a laser ranging to a ground target of a precisely known distance.
- It works OK down to ~ ps / sub-mm level.
 The laser fire epoch is recorded within 100 ns versus UTC
- New SLR applications:
 - Laser Time Transfer (LTT)
 - one-way laser ranging
 - bi- and multi-static laser ranging
 - require identification and calibration of one-way T / R biases
- In addition the T / R epochs must be referred to UTC < 1 ns</p>

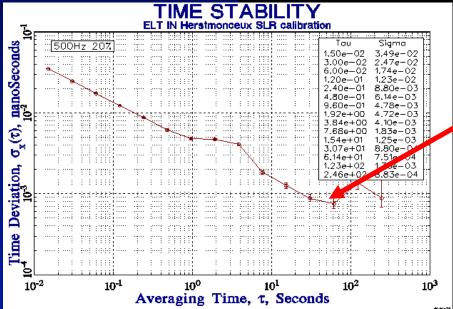
Transmit delay measurements Scheme developed for European Laser Timing

- The epoch is referred to the "1pps" inputs of epoch timing devices
- The Calibration Device delays may be determined with ~ 20ps accuracy
- Considering the Calibration Device delays and a real distance L the transmit delay related to "1pps" input may be determined with the same accuracy

Calibration Device

- The ELT Calibration Device was developed for ACES – ELT
- All the signal propagation delays were calibrated with ~15 ps accuracy and long term stability.
- The receiving part one-way calibration *R* may be simply calculated from standard ground target calibration *G* and transmit part bias *T*.

ELT Calibration Mission; SLR Herstmonceux UK



Completed May 23-27, 2016

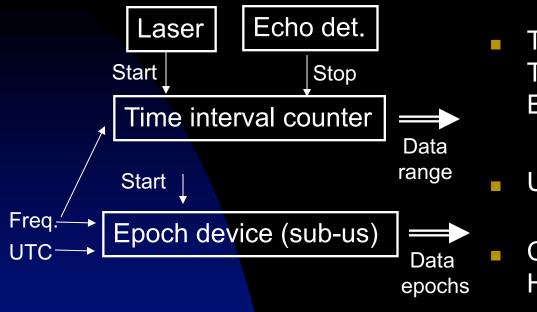
Single ~ 26 ps rms

ELT Calibration constant Transmit $T = -1.57 \pm 0.03$ ns.

TDEV < 1 ps @ 25s

Accurate timing; how do we get it? How good is it? What improvements are coming?

Ivan Procházka


ČESKE VYSOKE UČEN´ TECHNICKE V PRAZE

Presented at:

One-day Introductory and Refresher Course ILRS Technical Workshop 2019, Stuttgart, Germany October 20. 2019

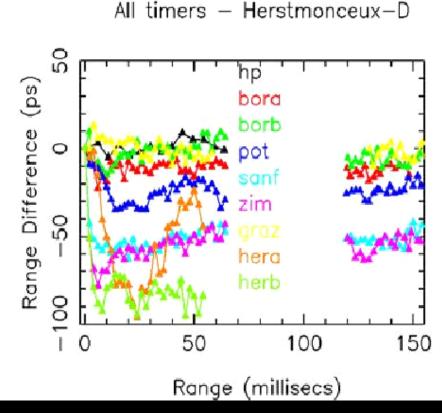
Czech Technical University in Prague, Czech Republic

Accurate timing for SLR - Two key concepts 1 - Time Interval Counter

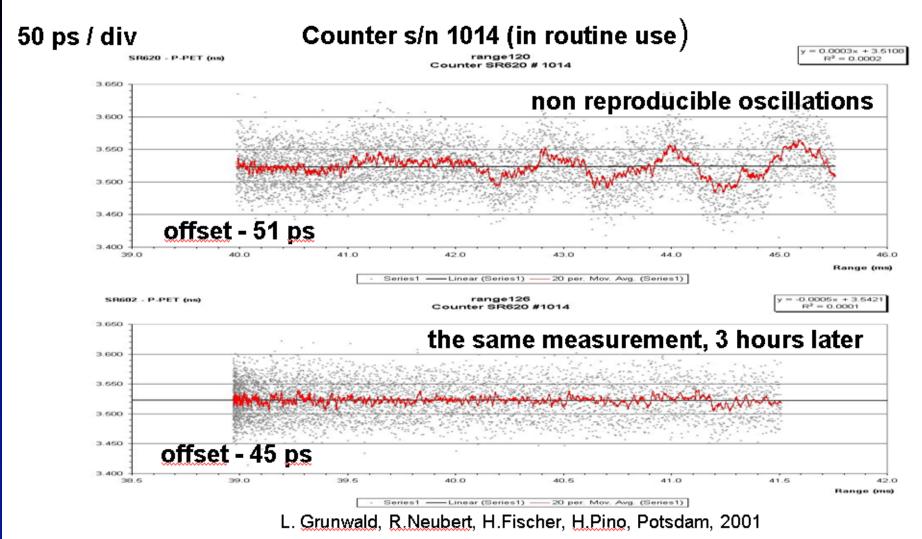
- Two independent devices:
 Time Interval Counter
 Epoch reading
- Used since very beginning

Common devices HP5370B, SR620

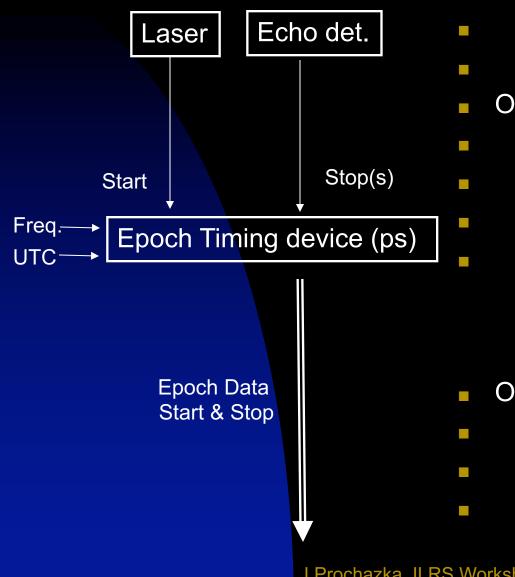
Limitations:


- low rep.rate 1...10 Hz
- linearity, stability (> 10 ps)
- Iow resolution epoch (> 10ns)

"Ranging machine" biases identification

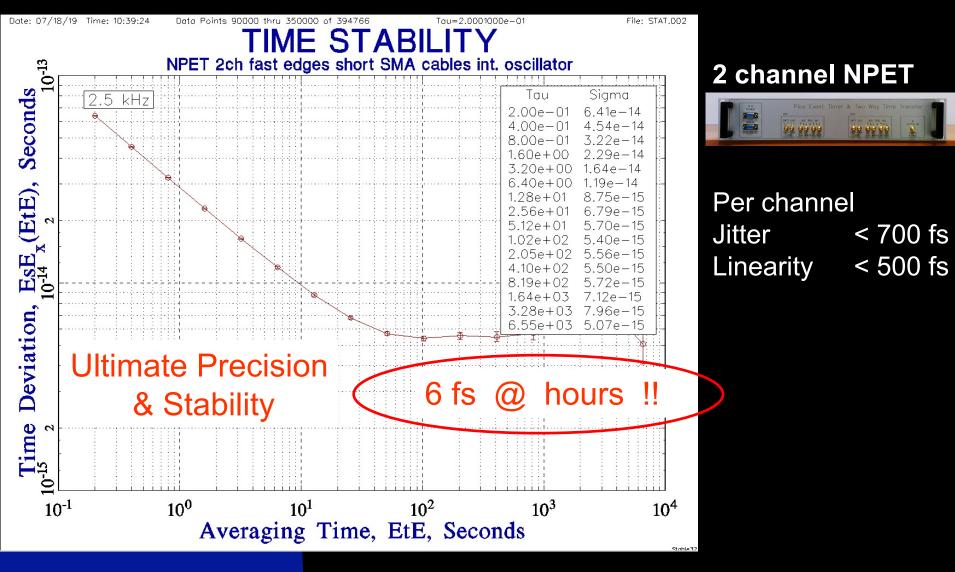

RANGING COUNTERS COMPARISON TO P-PET

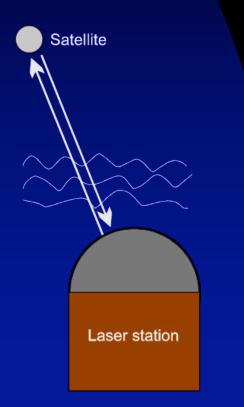
P. Gibs, Herstmonceux, 2002


 Shown here is a summary plot of all the devices.

SR620 / P-PET Counter Linearity Potsdam, 2001, LAGEOS pass

Accurate timing for SLR - Two key concepts 1 - Epoch Timing Devices


- ps resolution & (sub)-ps stability
- kHz reprates
- OR independent ET for Start & Stop
 - multiple Stops possible
 - no limitations on intervals
 - more complex, higher costs Thales Dassault, NPET


- OR common ET for both
- Intervals > ~ 50 ns
- simple, lower costs
 - Eventech Riga

What improvements are comming? ET for Laser Time Transfer ground - space

Echo signal strength issue

"What changes in procedures and processes would give the stations greater ability to detect biases ? "

ANSWER "1 photon only " approach

- > missing time walk effects
- => reducing target spread problems

SLR systems performance comparison

- Based on *Quarterly Global Report Cards* published by ILRS www pages.
- Simple averages over 4Q 2016... 2Q2017 all 5 data centers
- Selected 6 SLR sites as typical and highly productive: multi photon
 - Yaragadee
 - 2
 - 3 4
 - Graz
 - Matera

5

6

Changchun single – multi photon Mt.Stromlo 2 single – multi photon Herstmonceux single photon only single – multi photon multi photon

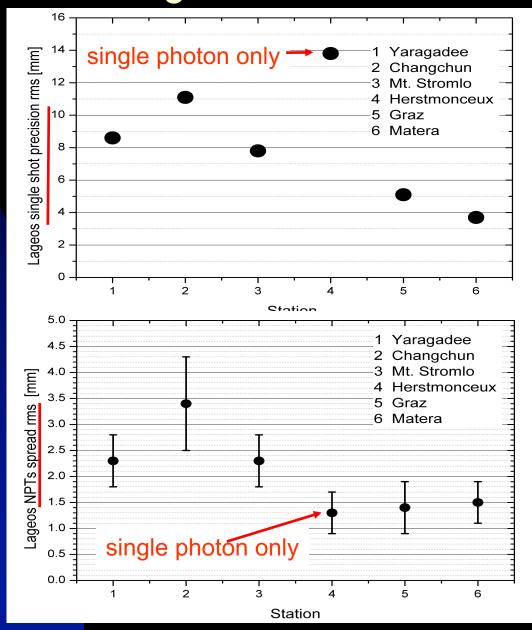
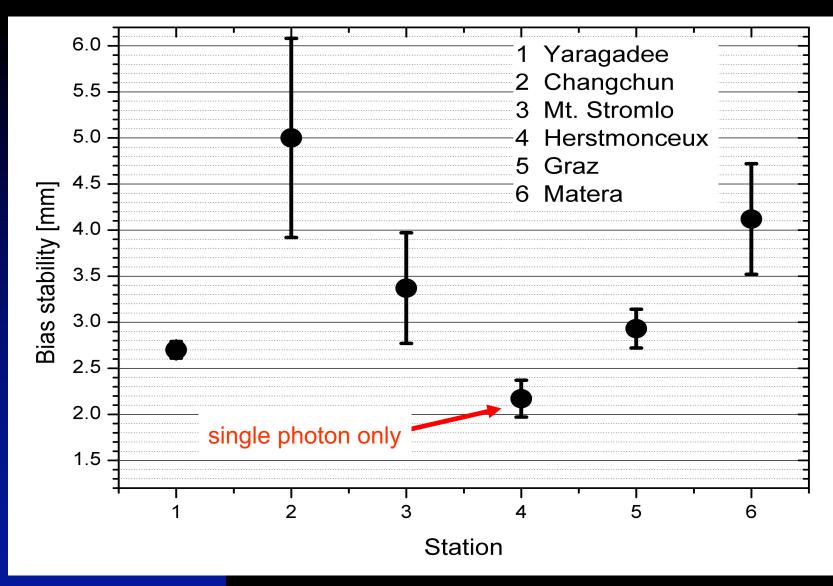

<u>∼ identical HW</u>

Table 2


Site Information		DGFI Orbital Analysis				Hitotsubashi Univ. Orbital Analysis				JCET Orbital Analysis				MCC Orbital Analysis				SHAO Orbital Analysis			
Station Location	Station Number	LAG NP RMS (mm)	short term (mm)	long term (mm)	good LAG.	NP			% good LAG. NP	NP RMS	short term (mm)	term	% good LAG. NP	LAG NP RMS (mm)	term	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG NF
Baseline		10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95
Yarragadee	7090	3.3	14.9	3.0	100.0	2.0	7.1	1.5	100.0	2.2	14.0	3.0	99.3	2.2	17.2	2.9	98.8	1.9	7.8	1.5	93.7
Changchun	7237	4.5	24.1	5.2	99.9	3.1	27.5	5.4	100.0	2.1	33.3	7.3	95.9	2.9	21.0	5.4	97.3	4.5	27.2	9.1	94.7
Mount_StromIo_2	7825	3.0	17.3	2.9	100.0	2.3	9.7	1.9	100.0	1.8	13.2	3.7	99.7	2.8	15.2	3.4	97.5	1.7	10.4	2.1	95.8
Herstmonceux	7840	1.8	10.8	2.3	100.0	1.0	6.5	1.3	100.0	1.1	10.3	2.6	100.0	1.6	10.3	1.9	99.7	0.8	6.5	2.8	97.3
Zimmerwald_532	7810	2.7	11.1	3.0	100.0	1.7	7.5	1.5	100.0	1.9	10.8	3.1	99.8	2.9	11.9	1.7	97.5	1.7	7.6		94.8
Wettzell	8834	3.0	13.1	6.5	100.0	2.3	8.9	6.2	100.0	1.8	12.2	5.9	99.6	2.5	10.5	7.4	98.3	1.6	10.9	8.2	95.0
Graz	7839	2.0	91	3.5	100.0	15	62	23	100.0	0.9	11 1	40	99.3	1.8	8.5	3.5	97.1	0.6	8.8	2.5	96

SLR systems performance comparison # 1 Lageos Precision

SLR systems performance comparison # 2 Bias long term stability

I.Prochazka, ILRS Workshop-School, Stuttgat, 2019

SUMMARY General Recommendations

- Operate the SLR on 1 photon level only
- Higher system stability is a prerequisite for smaller biases
- Maintain maximum system delay stability (selection of components, environment, procedures..)
- Permanently try to identify new possible bias sources
 ".. Suspect everything .." Jose Rodrigues, Matera, 2015
- Repeatedly check the individual contributors using more accurate references

SUMMARY # 2 SLR system calibration

- Use <u>optically correct calibration targets</u>
 2D hollow retro recommended for separate T/R
- Use efficient <u>spatial filtering</u> small FoV suppresses spurious reflections
- Ensure <u>perfect alignment</u> of the receiver optics (star tracking / scanning is a good check)
- Use <u>multiple targets</u> at different az and range check the system delay consistency
- Re-survey the targets geometry regularly use various scales, techniques,.....
- Keep detailed record of all system modifications, report any modification to ILRS