British

Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

-

SLR School - Session 3;
Corrections and Error Sources

José Rodriguez ” and Ivan Prochazka ® and Johann Eckl ®

(1) Space Geodesy Facility Herstmonceux
(2) Czech Technical University in Prague
(3) Federal Agency for Cartography and Geodesy | BKG

Stuttgart, 20™ October 2019

© NERC All rights reserved



© NERC All rights reserved

Session 3: Corrections - centre of mass
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Time of flight measurements are made to the internal surfaces of the cube corner retroreflectors
We want the distance to the centre of mass of the orbiting object
We need information relating the position of the retroreflector array to the centre of mass

Retroreflector array information and its location on the satellite must be provided by missions
when requesting laser tracking to the ILRS
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International Laser Ranging Service
ofthe International A tion of

Network Missions Science Data & Products Technology

4 R
Missions Home » Missions » Satellite Missions » Current Missions

List of Missions General ILRS Mission Support Retroreflector Info Array Offset Station Data Info

LI CryoSat: Reflector Information

Future
RetroReflector Array (RRA) Characteristics:

Past/Other

Spacecraft Parameters ‘.“J ‘\

Mission Support ﬂ

7
.g‘-

Mission Operations \

Missions Standing
Committee Courtesy of ESA

The Cryosat-1 and -2 retroreflector arrays hae seven corner cubes and is based on METEOR array design.

Quick Links

'T'T Fiight direction
» List of Missions

» List of Satellite Names

» Mission News

» Mission Campaigns

» Mission Support Request

> Predictions

» Priorities

Cross section of Cryosat retroreflector array Top view of Cryosat retroreflector array
Related Publications:

Reflected wavefront measurement of Crvosat LRR module
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R e 1 _
ofthe International A
1A

About ILRS Network Missions Science Data & Products Technology

VY e o il
[ Mfssfons Home » Missions »" Satellite Missions » Current Missions

List of Missions General L s - mr——— Array Offset Station Data Info

S COMPASS/BeiDou: Array Offset Information

Future
Center of Mass Information:

COMPASS-M1 | COMPASS-M3 | COMPASS-G1 | COMPASS-I3 | COMPASS-IS

Satellite CoM relative to satellite- (1082.0,-0.4, (1082.0, -0.4, (1152.5, 02, (1075.6, 0.0, (1075.6, 0.0,
ST T based origin: -0.5)mm -0.5)mm 0.0)ymm -0.4)ymm -0.4)ymm
Mission Support Location of phase center of the LRA | (649.9, -562.5, (649.9, -562.5, (6088, -570.2, | (673 -573, (673, -573,

relative to a satellite-based origin: 1112.3) mm 1112.3) mm 1093) mm 1093)mm 1093)mm
Position and orientation of the LRA (649.9, -062.5, (649.9, -562.5, (608.8, -570.2, (673, -573, (673, -573,
Missions Standing reference point relative to a satellite- 1133.3)mm 1133.3) mm 1114) mm 1114) mm 1114) mm

Committee based origin:

Mission Operations

Quick Links

¢ List of Missions

» List of Satellite Names

> Mission News

> Mission Campaigns

> Mission Support Request
¢+ Predictions

» Pricrities
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https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/irnb_com.html
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Test: geometric centre of mass from engineering drawings

+ atmospheric delay: per observation & met data
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Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)
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* Order of magnitude improvement
e RMS =1.87 cm; mean of residuals =9.97 mm

© NERC All rights reserved




Session 3: Corrections - centre of mass

Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)
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* Order of magnitude improvement
* RMS = 1.87 cm; mean of residuals = 9.97 mm
* Good residuals distribution (just slightly skewed)
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Session 3: Corrections - centre of mass (to be continued)

Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)
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* Order of magnitude improvement
* RMS = 1.87 cm; mean of residuals = 9.97 mm
* Good residuals distribution (just slightly skewed)
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Session 3: Corrections - Shapiro delay

Relativistic time delay

» Electromagnetic waves propagate slower in the presence of
a strong gravitational field

» Irwin Shapiro noted in 1964 that measuring this delay was
technically feasible (expected ~200 us to/from Mercury)

» Experiment successfully performed in 1967 of the round-
trip delay between Earth - Mercury and Earth - Venus

» Refinements would follow repeating the experiment with
the Viking Landers and Orbiters
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In near Earth environment small effect neglected for low

accuracy applications

12 Shapiro time delay (LAGEOS)

Depends on the relative positions of the ground stations
and the satellites

* 6-9mm for LAGEOS
e 13-19 mm for GNSS

correction (mm)
[e)]

H i 90 75 60 45 30 15
With accuracy goals of 1 mm, geodetic analyses must satellite elevation [deg]
include this relativistic effect
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Test: relativistic Shapiro time delay

+ Centre of Mass correction (engineering value)
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Test: relativistic Shapiro time delay

+ Relativistic time delay
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 Orbital fit improvement; modest RMS gains, 50% reduction of residual offset
* RMS =1.68 cm; mean of residuals = 5.38 mm
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Session 3: Corrections - centre of mass II

So far we only considered a naive approach to correct for the offset between CoM and reflection point
In the early 1990s it became clear that SLR data from different satellites presented different signatures

Moreover, the specific shape of these signatures depended on the detection equipment in use, as well
as on the way they were operated

The use of a single CoM value for each satellite applicable to all stations was no longer considered valid

Ground tests in the laboratory are of limited use to solve this problem




Question: Why don't you just read the technical drawings?

— 257.6 mm -,
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Question: Why don't you just read the technical drawings?

LAGEQOS
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Question: Why don't you just read the technical drawings?
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Question: Why don’t you just read the technical drawings?

Answer: Target signature effects

Distance to sat centre

Time of flight
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Session 3: Corrections - centre of mass II

Detailed modelling to compute CoM offsets for specific system specifications and mode of
operation were developed by Otsubo & Appleby (2003), later applied to several satellites

Recently we have revisited this model, improved some aspects of it, developed it further, and
applied it to compute new CoM offsets for six “cannonball” satellites (Rodriguez, Otsubo, Appleby
2019)

The most significant novelties include a new modelling approach for certain kinds of stations and
the use of more detailed hardware specifications, operational and processing details
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How do we compute CoM offsets?
1. Characterisation of satellite optical response
2. Computation of CoM values

a. Single-photon, single-stop stations
b. Multi-photon stations

Single-photon operation: intensity of detected laser pulses is limited,
statistically only one photon reaches the detector

Achieved by limiting detection rate below ~10%, so that probability of multi-
photon events is very low (Poisson statistics)
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Characterisation of target optical response

Function of: physical characteristics of retroreflectors
geometry of arrays
laser wavelength
target orientation

Physical data — ray tracing individual retro — average over array — empirical fit to single-photon data

Reflectivity map Response at arbitrary orientations Average over 250K orientations
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Session 3: Corrections - centre of mass II

Taking into account specifics of hardware/operation, use optical responses to compute CoM

a. Single photon systems
Simple mathematical relation between optical response and probability distribution of detections (Neubert 1994)

a. Multiple photon systems
More complex detection process and some practical operational pitfalls

We have modelled systems of both kinds with reasonable success
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Summary

« SLR measures round trip time of flight between stations and optical reflection points of
retroreflector arrays in orbit, using light pulses that propagate through the atmosphere in the
near Earth environment

» Thus, we need to apply corrections to accurately derive distances from the measured TOF

» Tropospheric delays, centre of mass offsets, and relativistic delays are essential corrections
applied to SLR data to achieve mm-level accuracies

» CoM offsets are system-specific, and dependent on how they operate — ideally stations should
acquire data in a consistent way
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