JC "RESEARCH-AND-PRODUCTION CORPORATION "PRECISION SYSTEMS AND INSTRUMENTS"

Information about "BLITS-M" SC
The preliminary results of ground tests over the ring CCR
array
V. Murashkin, V. Nenadovich, A. Sokolov, V. Shargorodskiy

Stuttgart, 2019

Information about "BLITS-M" launch

BLITS-M (Ball of lens in the space - modernized) retroreflector satellite has been developed and manufactured by the JC "Research and Production Corporation "Precision Systems and Instruments" under the contract with ROSCOSMOS.

The mission purposes are: calibration of the SLR stations, completion of scientific tasks in geophysics, geodynamics and etc.

The "target error" (uncertainty of satellite reference point relative to the CoM position) is less than 0.1 mm , and the Earth magnetic field does not affect the satellite orbit and spin parameters.

The reference point of the retroreflector is 110.43 mm behind the sphere center.
The range correction value is 272.522 mm tacking into account the indices of refraction.

Center of the sphere $\pm 0.05 \mathrm{~mm}$

Inner ball radius $\boldsymbol{R}_{\mathbf{2}}$	$63,987 \mathrm{~mm}$
Inner ball material	TФ105 (N-SF4)
External layer radius (SC radius) \boldsymbol{R}_{1}	110,430 mm
External layer material (menisci)	K108 (N-BK7)
SC mass	$16,7 \mathrm{~kg}$
Ballistic coefficient	$440 \mathrm{~kg} / \mathrm{m}^{2}$
The type of orbit	Circumpolar, circular.
The altitude of orbit and inclination	$1500 \mathrm{~km}, 82,5^{\circ}$
SC rotation parameters	Rotation axis is perpendicular to the orbital plane, 10 turns/min
Reflecting coating	Multi-layered, interference
Cross-section	about 1 million. \mathbf{m}^{2}
Optical magnitude	$11^{\mathrm{m}}-13^{\mathrm{m}}$

Calculation of star magnitude

Hemisphere with diffuse reflection

"BLITS-M" SC separation device

CCR array

GLONASS-M

112 CCRs.

GLONASS-K1

123 CCRs.

GLONASS-K2

36 CCRs.

for SC "GLONASS-K2"

Time reduction of a normal point formation up to 50 sec . and, thus, the increase of the SLR network productivity by providing the millimeter accuracy of ranging to the center of the RRA

Goal	Technical solution
Increase of the cross-section in 1,5 times up to the value of $180 \mathrm{mln} . \mathrm{m}^{2}$	Enlarged CCR (the aperture size is 48 mm with a "two-spot" radiation pattern, oriented by the RRA radius
Ranging error reduction (RMS of a single ranging measurement < 8 mm$)$	Two separate signals received from two CCR on the opposite sides of RRA
Reduction of the solar heating effect on the RRA characteristics	Interference dielectric coating on the CCR face

	Elevation 9	$\underset{\substack{\text { Elevation } \\ 80}}{ }$	$\underset{\substack{\text { Elevation } \\ 60^{\circ}}}{ }$	Elevation 30°
к1		\square		cumom
к2		$\underbrace{U^{(}}_{100 \mathrm{ps}}$	$\underset{400}{\substack{05}}$	

DAO = 2,4" $\pm 0,2^{\prime \prime}$

Cross-section (mln. m^{2})

Speed aberration angle (angl. sec.)

RRA production and testing

RRA parameters

| CCR aperture | 48 mm |
| :---: | :---: | :---: |
| Deviation (offset) of the dihedral
 angle from 90° | $2,4^{\prime \prime} \pm 0,2^{\prime \prime}$ |
| FFDP type | With two lobes |
| The number of CCR | 36 |
| One LRR mass (of all LRRs) | $120 \mathrm{gr}(4300 \mathrm{gr})$ |
| Base mass | 1700 gr |
| Reflecting coating | Interference
 phaseshift |
| Cross section in the normal light
 incidence | about $180 \mathrm{mln} . \mathrm{m}^{2}$ |
| Production error of the base | $0,1 \mathrm{~mm}$ |
| Temperature range | $\pm 100^{\circ} \mathrm{C}$ |
| Warranty period | 15,5 years |

1. Roscosmos has scheduled the Blits-M launch on 25 of December, 2019. The PSI Corporation now asks the ILRS to mobilize the global network of stations with the aim to provide support to the Blits-M mission.
2. RRA FFDP has a ring shape with a maximum at the angle distance, corresponding to the speed aberration value for SC "Glonass". In case of RRA in the LRS receiver two short impulses are formed instead of one broad impulse from the group of three CCRs on the opposite sides of RRA.
3. RMS of a single range measurement to the RRA center becomes equal to 8 mm instead of $40-70 \mathrm{~mm}$, and, then, the array phase center is determined precisely during 30 second instead 300 s .
4. We create a new technology of the enlarged CCR production with the accuracy of two-facet angles production - 0,2 ang. sec.
5. A new mechanical frame is designed, which allows to set CCR into RRA with $0,1 \mathrm{~mm}$ accuracy.
6. The produced CCR and RRA have successfully passed through the vibrating and thermal vacuum tests.

Joint Stock
 "RESEARCH-AND-PRODUCTION CORPORATION "PRECISION SYSTEMS AND INSTRUMENTS" (JC "RPC"PSI")

111024, Moscow, 53 Aviamotornaya St., tel.: (495) 234-98-47, fax: (495) 234-98-59 www.npk-spp.ru

