JAXA

Status Report of Tanegashima SLR Station (GMSL) and Developing Status of JAXA's Next SLR Station

> **Takehiro Matsumoto**, Katsuhide Yonekura, Moeko Ryoki, Shin Miyatani, Kazuhiro Yoshikawa, Takushi Sakamoto, Yuki Akiyama, Hiroyuki Ito and Shinichi Nakamura

> > Japan Aerospace Exploration Agency (JAXA)

The objectives of this presentations are:

- To report JAXA's current operation status (Tanegashima SLR station and flight dynamics system).
- To report the progress status of JAXA's next SLR station.

Systems and data flow

System Overview

- Tanegashima station was built in 2004.
- It has the capability of ranging satellites with a laser retroreflector array (LRA) from low Earth orbit to geostationary orbit.
- Unfortunately, it has been in Quarantine since 2012 due to the temporary facility troubles.

Telescope	
Aperture	1 m
Туре	Cassegrain
Pointing Accuracy	< 2 arcsec
Laser	
Wavelength	532 nm
Pulse Width	Low Mode: 50 ps
	High Mode: 250 ps
Repetition Rate	10 Hz
Maximum Energy	Low Mode: 50 mJ/pulse
	High Mode: 250 mJ/pulse
Detector	
Туре	MCP-PMT

A State of the sta

Laser and Coude Path

Tanegashima SLR station

21-25 Oct. 2019, ILRS Technical Workshop 2019, Stuttgart

Flight Dynamics System

Orbit Estimation and Prediction

• JAXA estimates the orbits of Ajisai and LAGEOS1, 2 using our flight dynamics system, and distribute the predicted ephemerides (CPF) every day.

Accuracy Evaluation of CPF

- Predicted vs. Observed ephemeris (upper figure)
 - The maximum position errors of Ajisai, LAGEOS1, 2 are no more than 20m, 5m, 5m respectively.
- The scale factor of atmospheric density ρ1 (lower figure)
 - Estimated as a part of the orbit estimation process (for only Ajisai).
 - The rapid change of atmospheric density caused bad accuracy of Ajisai CPF.

Motivation

- Tanegashima station is too old to acquire sufficient amount of data and continue to work for long.
- SLR technology has evolved over the last few decades(kHz ranging, SPAD, infrared wavelength, etc.).

Location

- JAXA's next SLR station will be located in Tsukuba Space Center, Ibaraki Pref.
- Quicker access than Tanegashima station saves time:
 - to change the system configuration
 - to find causes of troubles
- Tsukuba is more suitable for laser ranging because the weather is better than that of Tanegashima.

Concept

- The concepts of the next SLR are simple, compact and cost-effective.
- It is planned to be equipped with new SLR technologies.

Comparison with Tanegashima

	Tanegashima	Tsukuba
Wavelength	532 nm	532 nm and 1064 nm
Repetition Rate	10 Hz	1 kHz
Detector Type	MCP-PMT	SPAD
Safety System	Radar	Radar and ADS-B

Accuracy (design value)

Target	Single-Shot (RMS) (σ_{SS})	Normal Point Precision (σ_{NP})	Pass-by-Pass Bias Stability* (σ_{RB})	$\sqrt{\sigma_{NP}^2 + \sigma_{RB}^2}$
LAGEOS (532nm)	< 7.1 mm	< 0.6 mm		< 8.0 mm
LAGEOS (1064nm)	< 15.5 mm	< 1.4 mm	< 9.0 mm	< 8.1 mm
GNSS/GEO (532nm)	< 30.7 mm	< 1.7 mm	< 8.0 mm	< 8.2 mm
GNSS/GEO (1064nm)	< 33.6 mm	< 1.9 mm		< 8.2 mm

21-25 Oct. 2019, ILRS Technical Workshop 2019, Stuttgart

Return Rate

Below figures show the results of Return Rate analysis for LAGEOS and GEO when using 532nm laser. As can be seen, the return rate always exceeds 0.1% (correlates 1 return/sec @1kHz).

21-25 Oct. 2019, ILRS Technical Workshop 2019, Stuttgart

Overall Station Design

- The overall dimension of the station is $7300(W) \times 4760(D) \times 5575(H)$ mm.
- The dome is an off the shelf slit type with 4 m inner diameter and 4.2 m outer diameter.
- The utility mast will be equipped with GPS antenna, Camera, and ADS-B antenna.

Telescope

Parameter	Value
telescope	AZ800 (ASA)
Focus	Nasmyth
Focal length	5476 mm
f-number	6.8
Optical diameter	800 mm
Pointing accuracy	< 8"(RMS)
Tracking accuracy	< 0.25"(RMS)
Slewing speed	6 deg/sec

Laser Package

- Laser optics package includes the Laser head unit and the transmit optics.
- Laser electronics package includes pumping unit and thermostat.
- Both packages will be mounted directly on the telescope.

Parameter	Value							
Wavelength	532 nm	1064 nm						
Repetition rate	1 kHz	1 kHz						
Pulse energy	260 µJ	350 µJ						
Pulse width	7 ps	8.5 ps						
Beam diameter	< 65 mm	< 65 mm						

Detector Package

- Detector package will be also mounted directly on the telescope.
- It includes SPAD for both wavelength, optical components, CCD camera, shutters and so on.

Parameter	Value	
Wavelength	532 nm	1064 nm
Detector	C-SPAD	IR-SPAD
Active area diameter	200 µm	80 µm
Quantum efficiency	> 40 %	Max 30%
Single photon jitter	< 40 ps	< 100 ps
Dark count	200-600 kHz	300-700 kHz

Schedule

	20	19				2020 2021														2020														
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
Station Design																																		
Development and Manufacture				V																							Tai	nega stop	shim oper	na SL ratio	.R wi n	II		
Test Operation															Tsu sta	ıkub rt op	a SLI perat	R wil ion!	 !															
Operation																																		
Tanegashima Operation																																		
Remarks																									7	JAX is	(A's r plan	iew s ned t	atelli o be	ite (A laun	LOS- ched	4)		

Development of JAXA's LRAs – Mt.FUJI Series

JAXA's LRAs for LEO Objects, Mt.FUJI Series

- Mt.FUJI : MulTiple reFlector Unit from Jaxa Investigation
 - Standard size
 - Passed EM test; vibration test, shock test, and thermal cycle test
 - FM test starts in this November
- Mini-Mt.FUJI
 - Small size
 - EM test starts in this November

Both are planned to be sold at an affordable price in the future ...

		Alter
A Company	souther an	- Aleren
	N // +	Euli

Parameter	Mt.FUJI	Mini-Mt.FUJI
Target Altitude (assuming circular orbits)	< 800 km	< 500 km
Diameter	112 mm	< 70 mm
Height	32 mm	< 20 mm
Weight (including CCRs)	< 280 g	< 120 g
CCR size	1 inch	0.5 inch
Number of CCR	7	7

Mt.FUJI (EM model)

Thank you!