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The Behavior of Long Tethers in Space'

David A. Arnold?

Abstract

’

The behavior of satellites connected by long tethers is discussed in terms of basic physical
principles with some mathematics included. The topics included the gravitational, centrifugal,
and aerodynamic forces on the system, vertical stabilization using the gravity gradient force,
librations of the system, and longitudinal and transverse motions of the tether. Deployment and
retrieval of the system are discussed, along with strategies for controlling librations particularly
during retrieval. Other topics include the use of tethers for exchanging energy and momentum
between satellites, tether strength requirements and tapering techniques in long or rotating
systems, and instability of a particular type of extremely long tethered configuration.

Introduoction

The purpose of this paper is to discuss the dynamics of long orbiting tethers in terms
of basic principles of physics and mathematics. Many of the most important aspects of
the behavior of tethers can be understood in a simple way without resorting to compli-
cated mathematics. Computer simulations using only basic principles can be written to
study the dynamics using numerical integration. Deriving the equations of motion in a
reference frame rotating with the orbit is more complicated but produces useful insight
into the characteristics of the motion.

Vertical Gravity Gradient
A satellite orbiting the Earth is subjected to a gravitational force F, given by

GMm
Fo= - M

where GM is the gravitational constant of the Earth (3.986013 X 107 in cgs units or
3.986013 X 10 in MKS units), m is the mass of the satellite and r is the distance from
the center of the Earth. The centrifugal force F, is given by
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F. = mr()® (2)

where () is the orbital angular velocity. In a circular orbit, the net vertical force F. on
the mass given by

F,=F;+F, 3)
must be zero. Setting F, = 0 gives the relation
GM

0 = T (4)

Figure 1 shows a tethered system orbiting the Earth such that the tether remains
aligned with the local vertical and all parts of the system have the same orbital angular
velocity (). The lower mass m, will be subjected to more gravitational force and less
centrifugal force than the upper mass m,. The result is that there is a net force toward
the Earth on m; and a net force away from the Earth on m,. This results in a tension
T in the wire. In order for the system to remain in a circular orbit, the angular velocity
{1 must be such that the total gravitational force on the system is equal and opposite to
the total centrifugal force on the system. Therefore we must have

“GMd .
= f dmrQ? (5)
| i L4}
Solving for ) gives
“GMdm /("
e
| r L5
If we can neglect the mass of the tether, equation (5) becomes simply
GM GM
rzm‘ T = Q@ )
1 2

from which () can be easily calculated. There will be some point along the system
where the gravitational and centrifugal forces are equal to each other. A mass at this
point is in a zero-g condition and experiences no net force in the radial direction. The
value of the orbital radius r, where this condition occurs can be calculated by taking
the value of ()* from equation (6) and putting it into equation (4), which gives the

FIG. 1. Vertically Stabilized Tether System.
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relationship between () and r required to have equal gravitational and centrifugal
forces. Setting r = r, we have

== (8)
or
GM 173
= (%) 4

For short tethers the value of r, will be nearly equal to the position of the center of mass
of the system. However the difference between 7, and the position of the center of
mass can be significant for long tethered systems.

The force F, on a mass m located on a tethered system at radius r from the center
of the earth can be calculated using equation (3) with F, given by equation (1), F. by
equation (2) and QO by equation (6). At r, the value of F is zero. We can derive an
approximate expression for F, as a function of the distance from r, in the following way.
The rate of change of F, with respect to r obtained by differentiating equation (1) is

oF, GMm
— =2 1
or rl (10
The rate of change of F, is, from equation (2)
aF,
=) (11)
ar
If r = r,, equation (8) can be used to rewrite equation (10) as
aF
—£ = 2mQ)? (12)
ar
If a mass is at a distance z from r,, where z is given by
=0 — i, (13)
the force F can be written approximately as
ar,  @OF,
F,=z|—% + —”) 14
i 2( ar or (14)
Substituting equations (11) and (12) gives
F. = 3m{z (15)

Equation (15) gives an approximate formula for the gravity gradient force on a mass at
distance z from the zero-g point r, along the tether. From equations (11) and (12) we
see that the “gravity gradient” force F, actually consists of two parts gravity gradient,
and one part centrifugal gradient.

Out-of-Plane Gravity Gradient Force

Suppose two masses are in orbit at the same altitude, but separated from each other
in the out-of-plane direction as shown in Fig. 2. We wish to calculate the gravity
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gradient force acting along the line between the two masses. Figure 3 shows the systemn
as seen by an observer looking in the direction of motion. The behavior of masses
separated in the out-of-plane direction can be understood by considering the orbits of
the masses as free satellites. The velocities of i, and m, in Fig. 3 are parallel and
directed into the plane of the paper. Since the gravity force is directed toward the center
of the Earth the piane of the orbit of m, is different from that of m,. Starting from the
positions shown in Fig. 3, the masses would meet after 1/4 of an orbit. In a free orbit,
the centrifugal force ¥, on m, is equal and opposite to the gravitational force F,.
Suppose masses m; and m; are held together by a rigid structure. They would then be
forced to move in parallel circles and the centrifugal force F; on m, would be perpen-
dicular to the y axis as shown in Fig. 3. The gravitational force would then have an
unbalanced component in the y direction. It is more convenient to use F, given by
equation (2) to compute the net force since it is written as a function of (1. The net force
F, on mass 2 is

F,=F, = —mr(®= (16)

~

FIG. 3. Two Out-of-Plane Masses Seen from the Direction of Motion.



The Behavior of Long Tethers in Space 7

F, = —m0y (17)

The gravity gradient force in the out-of-plane direction is negative and does not produce
a tension in a tether connecting the masses.

In-Plane Gravity Gradient Force (Flight Direction)

There is no net in-plane force. Figure 4 shows two masses separated from each other
in the in-plane direction at the same orbital altitude. Since both masses have the same
orbital plane, there is no relative motion between them. They simply follow each other
around in the orbit maintaining a constant relative distance. The centrifugal and gravita-
tional forces remain equal and opposite. (A rigorous derivation of the equations of
motion in a rotating frame shows a centrifugal acceleration component (% in the in-
plane direction that is cancelled by the in-plane component — % of the gravity gradient
acceleration.) We can write the gravity gradient force in the in-plane direction as

F,=0 (18)
Librations

From the preceding sections, we can summarize the gravity gradient forces acting on
a tethered satellite as follows. At the orbital center of a system, the gravitational and
centrifugal forces are equal and opposite. If a mass is moved and held fixed at some
point along the x axis (flight direction) F; and F. remain equal and opposite. If the
displacement is in the z direction (along the local vertical) the forces remain opposite
but not equal. In the y direction (out-of-plane) the forces remain equal but not opposite.
Let us define a coordinate system with origin at r, (the zero-g point of the system),
having the z-axis pointing away from the Earth, the x-axis pointing in the direction of
the orbital velocity, and y-axis pointing in the out-of-plane direction as shown in Fig. 5.
From equations (15), (17) and (18) we have the vector gravity gradient force on a mass
given by the set of equations

By = (19)

By = —mQ?y (20)

F, = 3m(’z (21)

m, m,

/#Q\\
7~ ~
// \\
. \\

FIG. 4. In-Plane Displacement (Flight Direction).
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FIG. 5. Rotating Coordinate System.

Suppose we have a tether system of length € that is deployed upward with small
displacements from the vertical in the x and y directions as shown in Fig. 6. There will
be a gravity gradient force of magnitude 3m€)?*¢ in the z direction and a force ~m?y
in the y direction. Let us define an in-plane angle @ and an out-of-plane angle ¢ where
¢ and ¢ are given by the equations

0 =~ x/t (22)
and
¢ =y/t (23)

for small displacements. The gravity gradient force F, will produce torques affecting
the in-plane and out-of-plane angles, and the gravity gradient force F, will produce an
additional torque on the out-of-plane angle. The torque 7, on the in-plane angle is

Ty = —EF,0 = —3m02¢9 (24)
The torque 7,4 for the out-of-plane angle is
Ts = ~{F.p + €F, = —3m(*0¢ — mO¥y 25)
m z

|
P\ £
|
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I
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—
L— ¥

FIG. 6. Libration of the Tether.
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Since y = ¢€ we can write
76 = —4mQ* ¢ (26)

We see that there is a restoring torque in both the in-plane and out-of-plane directions
that tends to keep the system aligned with the local vertical. The restoring torque for the
out-of-plane angle is stronger than that of the in-plane angle. As a result, out-of-plane
librations have a higher frequency than in-plane librations. Equations of motion for the
system have been derived and the results are presented in the Appendix. If the angular
deviations and angular velocities are small, the only important terms in the equations
of motion for ¢ and ¢ are the torques given by equations (24) and (26). Since
Ty = mfzﬁ, and 74 = m€2$, the equations of motion for small angles and fixed tether
length are

d = —30% 27
and
¢ = —40% (28)

The frequency of the in-plane libration is V3 Q and the frequency of the out-of-plane
libration is 2{), where () is the orbital angular rate.

Momentum Exchange Using Tethers

Figure 7 shows a vertically stabilized tethered system. Mass m is at an orbital radius
r and mass m, is at an orbital radius »,. The zero-g point of the system is at orbital
radius r,. All parts of the system move with constant orbital angular velocity {3 which
can be caleulated from equation (6). For short systems, r, is approximately the position
of the center of mass, and one can calculate () approximately by setting r, equal to the

FIG. 7. Qubits of Masses After Release from a Tether.




10 Arnold

orbital radius of the center of mass in equation (8). The orbital speeds v, and v, of
masses m,; and m, are

vy = Orn (29)
and

Va = sz (30)

The gravitational and centrifugal forces are equal at orbital radius r,. The gravitational
force on m; is stronger and the centrifugal force is weaker. If m, were released from
the end of the tether, it would drop into a lower orbit with the point of release being
the apogee of the new orbit. For mass m, the gravitational force is weaker and the
centrifugal force is stronger. If it were released from the end of the tether it would go
into a higher orbit with the point of release being the perigee of the new orbit.

After release from the end of the tether a mass will go into an elliptical orbit. The
semi-major axis @ of the new orbit can be calculated from the equation

(2 1)
v = £JGM|— —— (31)
r a

where v is the velocity, » is the distance from the center of the earth and GM is the
gravitational constant of the earth. The velocity at the time of release is given by
equations (29) and (30). For short tether lengths, the change in orbital altitude after half
an orbit is given approximately by the equation

(r" = r) =70 —r,) (32)

where r is the distance from the center of the earth at the release point, and ' is the
distance after half an orbit. If the mass is below the orbital center r,, r' is the perigee
of the new orbit. If the mass is released from above the orbital center, r’ is the new
apogee. Equation (32) was derived using equation (31). The details of the derivation
are given in Reference [I].

Velocity Dependent Forces

Equations (19) through. (21) give the forces on a mass as a function of the displace-
ment from the orbital center when there is no motion relative to the orbital center. If
the mass has a velocity relative to the rotating orbital coordinate system there can be
additional forces. Figure 5 defines a rotating orbital coordinate system with the x-axis
in the direction of the orbital motion. Suppose a mass has a velocity x with respect to
the rotating coordinate system. The orbital centrifugal force is given by equation (2).
At the orbital center this is equal and opposite to the gravitational force given by
equation (1). However the velocity x is added to the orbital velocity v shown in Fig. 5,
thereby increasing the orbital angular velocity (). This results in an additional centri-
fugal force in the z direction. The change in the orbital centrifugal force can be obtained
by differentiating equation (2) with respect to Q which gives

dF, = 2mrQdQ} (33)
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The change in £} is
dQ = — (34)

Setting r = r, in equation (33) and substituting equation (34) for d{} gives
dF. = 2mQx (35)

If there is a velocity z in the radial direction there will be a Coriolis force Fepr in the
—x direction given by

FCOR = —2ml}z (36)

A velocity ¥ in the out-of-plane direction does not produce either a Coriolis force or
an additional centrifugal force. These results can be summarized by the equations

F! = —2mQi (37)
Fi=0 (38)
Fi=2mQx (39

where F;, F, and F; are the velocity dependent forces due to motion relative to the
rotating orbital coordinate system,

Combining equations (19) through (21) and (37} through (39), the equation of mo-
tion in the rotating orbital coordinate system is

F, = mk(x + 20Qz)
+ my(F + Q%)
+ mz(7 — 20% — 30%) 40)

where F, is any external applied force. The equations of motion given in the Appendix
contain additional centrifugal, Coriolis and coupling terms resulting from the use of a
spherical coordinate system.

Deployment and Retrieval

Equations (19) through (21) and (37) through (39} give sufficient information to
discuss the technique of retrieval or deployment at a constant in-plane angle. Suppose
we have a vertically stabilized orbiting tether system such as shown in Fig. 1, which
we wish to retrieve. Let us assume for this discussion that 1, is very heavy compared
to m, so that the orbital center is close to the position of #7,. The principles discussed
would apply equally well to the case of comparable masses by using the orbital center
as the origin of a rotating coordinate system. Suppose mass m, starts to pull in on the
tether so that mass m, is given a velocity 7 in the vertical direction. From equation (37)
we see that there will be a Coriolis force pushing m, toward the —x direction. The mass
m, will start to acquire an in-plane libration angle & as shown in Fig. 8. Using
equation (21) we can calculate the gravity gradient force in the z direction. If the tether
length is €, the z position is

z=—{cos @ 4D
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FIG. 8. Retrieval at 2 Constant In-Plane Angle.

so that the gradient force is

F, = =3m{¥€ cos 8 (42)
This will have a component F, in the & direction given by
Fp=F,sin # = —3mQ?¢ cos 0 sin ¢ 43)

Figure 9 shows the components of the retrieval velocity £ in the x and z directions. The
velocity components are

i=—{sin b (44)
and
z=—¢cos (45)

Substituting equations (44) and (45) into equations (37) through (39) gives the velocity
dependent forces

F! = 2mQ¢ cos 8§ (46)
and
F! = —=2mQ¢ sin 6 47
o
I -
z
lg
I

FIG. 9. Retrieval Velocity Components,
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The component F; of these forces in the @ direction is
Fh = —2mQf cos?d — 2mQf sin?6 = —2mQe (48)

Retrieval at a constant angle @ can be achieved by choosing ¢ such that the velocity
dependent forces F, are equal and opposite to the gradient forces F;. Setting
equations (43) and (48) equal and opposite gives

2mQE = —3mQ*¢ cos 6 sin 0 (49)
or
. 3 )
£ = -——2—€Q cos 0 sin @ (50)
Equation (50) can also be obtained from the general equation of motion in the Appendix
by setting Fy = 8 = ¢ = ¢ = ¢ = 0. The equation is of the form
—g— = —q (51)
where
3 .
a = EQ cos 8 sin & (52)

Equation (51) is easily integrated to give
£ = fpe™ (53)

where € is the length at ¢t = 0. Deployment at a constant angle can be achieved by
having the deployment velocity proporticnal to €.

Control Strategies During Retrieval

Deployment of a subsatellite is an inherently stable operation. Retrievai is inherently
unstable, and cannot be accomplished without special control techniques. The applica-
tion of a rate control law such as equation (50) will not produce a stable retrieval
because small oscillations will tend to grow in amplitude as the length of the tether
decreases. Because of the Coriolis forces given by equations (37) through (39), there
is strong coupling between the rate of change of tether length and the in-plane angle.
Increasing the retrieval rate will increase the in-plane libration angle, and decreasing
the rate will decrease the angle. It is therefore possible to control the in-plane angle by
adjusting the retrieval rate. There is poor coupling between the retrieval rate and the
out-of-plane libration angle. For the out-of-plane librations, reasonable retrieval times
can be achieved by active control of the out-of-plane angle using thrusters on either of
the end masses. As the tether length becomes very short, an in-line thruster can be used
to prevent loss of tension in the tether and active control of the in-plane angle can be
substituted for rate control to aveid exponentially decreasing retrieval rates for the final
approach. At some point atmospheric drag forces would become larger than the de-
creasing stabilization effect of the gravity gradient force. The final approach must be
done under nearly zero-g conditions.
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Wire Oscillations and Rotations of the Subsatellite

In addition to in-plane and out-of-plane librations which have been discussed pre-
viously, a tethered system can execute a number of other kinds of oscillation. The wire
can have both Jongitudinal and transverse oscillations. If the mass of the tether is small
compared to that of the end masses, the motion can be described by the usual equations
for a vibrating string. In very long tethers, the mass of the tether can be substantial and
the dynamics is more complicated. The end bodies can also rotate back and forth under
the restoring torque of the wire. All of these motions can be coupled to each other in
varying degrees. At low altitudes atmospheric drag can excite transverse wire oscil-
lations and librations of the system. In an inclined orbit drag forces can produce a
resonant buildup of out-of-plane librations. Analysis of the motions of the system
requires rather complex computer simulation programs.

Strength of Tethers

Because of the length of the tethers to be used in space, it is important to minimize
the total mass of the tether by using materials such as Kevlar which have a high strength
to weight ratio. The tether cannot be made too thin because of the risk of being cut
by a micrometeorite impact. A Iong tether can have a large total surface area so that
the risk of a micrometeorite impact can be significant. The tethers planned for use
on the TSS project have a diameter of about 2 mm and are made of a braided con-
struction which should be able to survive most impacts so as to have a reasonable
expected lifetime.

If the diameter of a tether is kept constant, there is a maximum attainable length in
near Earth orbit beyond which the tether will break under its own weight because of the
gravity gradient forces on the system. The greatest stress occurs at the orbital center of
the system. The gravity gradient forces are directed away from the orbital center both
in the upward and downward directions. At any point along the tether, the tether must
be strong enough to support all the parts of the system in the direction away from the
orbital center. Tethers of indefinite length can be put in orbit by tapering the tether so
as to maintain a constant stress per unit cross sectional area. The difference in tension
between the ends of a segment of tether is equal to the net force on the segment due
to gravitational and centrifugal forces. The cross section of the tether should be propor-
tional to the tension at each point. Since the gravity gradient is non-linear for long
tethers, exact expressions should be used for the gravitational and centrifugal forces.
If A is the cross section, p the density, and ¢ the strength per unit cross section of the
tether, the change in cross section dA over a segment of wire of length dr can be
calculated from the equation

M
cdA = Gr—zdm — rQ%m (54)

where dm = pAdr, r is the distance from the center of the Earth, (} is the orbital
angular velocity, and GM is the gravitational constant of the Earth. Below the orbital
center A increases with r because the gravitational force is greater than the centrifugal
force. Above the orbital center A decreases with r. The tether must be thickest at the
orbital center and tapered toward the ends (see Fig. 10). Although there is no limit to
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FIG. 0. Tapering of a Long Vertical Tether.

the Iength that can be achieved, the payload that can be supported on the end keeps
getting smaller. Additional equations for studying such a system are given in
Reference [1].

Rotating tethers are another example where tapering can save considerable tether
mass. If a rotating tether is retrieved by pulling in the tether at one end, the centrifugal
forces on the system will keep increasing. The last part of the tether retrieved will be
subjected to the greatest stress and must be the thickest (see Fig. 11).

Altitude Changes During Deployment and Retrieval

In the process of retrieval of a tethered satellite system, the reel motor does work
against gravity gradient forces. This work increases the orbital energy of the system.
Conversely, during deployment, the orbital energy decreases. The gravity gradient
forces are proportional to the tether length for short tethers, so that the work done during
retrieval is proportional to the square of the tether length for short tethers. For long
tethers the tension is no longer linear with tether length. Assuming that no thrusters or
other external forces are used during retrieval, there must be conservation of the total
angular momentum of the system. The final orbit after retrieval can be calculated using
the principle of conservation of angular momentum. For simplicity one can assume that
the retrieval is done slowly and that the final orbit is circular. The work done during
retrieval can then be calculated as the difference in total orbital energy before and after
retrieval. Figure 12 shows a plot of retrieval energy vs. tether length calculated in this
manner. Both masses are 10 metric tons and the lower mass is at an altitude of 200 km
before retrieval. The tether mass is neglected. Initially the retrieval energy is pro-
portional to the square of the tether length. At a tether length of about 5000 km the

\ /

FIG. 11. Tapering of a Rotating Tether.
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FIG. 12. Retrieval Energy vs. Tether Length.

10

retrieval energy reaches a maximum and decreases for longer tether lengths. Past about
9000 km the retrieval energy is negative. In other words, the total orbital energy after
retrieval is less than the energy before retrieval. In trying to understand how this could
happen, it was noticed that the total orbital energy before retrieval is positive for very
long tethers. The system has enough energy to escape from orbit but is trapped in a
circular orbit.

Computer simulations have been done to study the dynamics of these very long
systems. The simulations show that these systems are unstable. As long as the system
remains perfectly aligned with the local vertical it can remain in a circular orbit.
Eventually, because of small errors in the initial conditions, vertical stabilization is lost.
If the system librates forward (so that the libration angular velocity is parallel to the
orbital angular velocity) a system with positive orbital energy will escape from orbit.
If the system librates backward, the system falls out of orbit and the lower mass impacts
the body about which the system is orbiting.

Table 1 lists various transition points as a function of the ratio of the orbital radius
of the upper mass to that of the lower mass.

TABLE 1. Orbital Radius Ratios For Transition Points

i

2.890053638 Total system energy equal to zero

2,385996517 Retrieval energy equal to zero

1.83929 Center of energy at the altitude of the upper mass
1.7556982 Maximum retrieval energy

1.521379707 Energy of upper mass equal to zero

1.451368226 Altitude after retrieval equal to that of the upper mass

before retrieval
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FIG. 13. Rotating Spherical Coordinate System.

Computer simulations have been done to study negative energy states to see if they
are unstable for long tether lengths. For the idealized case used in the analysis, the
simulations show that there is a gradual onset of instability starting at tether lengths in
the vicinity of 6000 km. It is difficult to determine the exact length at which instability
occurs. The center of energy goes outside the system at a tether Iength of 5520.83 km.
This may provide an explanation for the onset of instability. These systems between
about 5500 and 12,432 km have negative orbital energy so that they cannot escape.
However they do not remain in a stable circular orbit. The details of the analysis and
simulations are given in Reference [2].

Appendix

Figure 13 shows the position of a tethered object with respect to the orbital center of
a system. It is assumed that the orbital center moves in a perfect circular orbit at
constant angular velocity ). The general equations of motion for the system are

F = mi[r — ré? — r cos’¢p(0 + QP + r¥ — 3r0? cos?f cos’¢h]
+ mO[br cos ¢ + 2(8 + Q) (r cos ¢ — ré sin ¢)
+ 37£)% cos 9 cos ¢ sin 8]
+ mdlr + 21"<f> + r cos ¢ sin H( + Q) + 3rQ? cos®@ cos ¢ sin B]
(AD
where @ is the in-plane angle, ¢ is the out-of-plane angle, r is the distance from the

orbital center, F is any applied force on the body, and # is the mass of the body. These
equations are valid for short tether lengths since they were derived by linearizing the
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gravity force. The derivation of these equations, including exact expressions for the
gravity force, is given in Reference [3].
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