
ILRS Support for TerraSAR-X and TanDEM-X -Status and Future Prospects

Ludwig Grunwaldt, Rolf König

GeoForschungsZentrum Potsdam, Section 1.2 "Earth Observing Satellites"

TOR TanDEM-X

TerraSAR-X was launched on 15 June 2007 into a circular dawn-dusk , 11-day repeat orbit at 514 km altitude (sun-synchrounous) Primary instrument is a Synthetic Aperture Radar (SAR) GFZ and UTCSR contributed the TOR payload (GPS + LRR) for

Precise orbit determination, resulting in enhanced SAR data quality

• Collection of ionospheric and neutral-atmospheric radio occultation data for deriving vertical profiles of humidity and temperature - shall be used for improved SAR error correction

TanDEM-X will follow in fall 2009 for a close formation flight (target: 3 years!) with the nearly identical TerraSAR-X

Use of both SAR instruments for bistatic measurements to derive DEMs

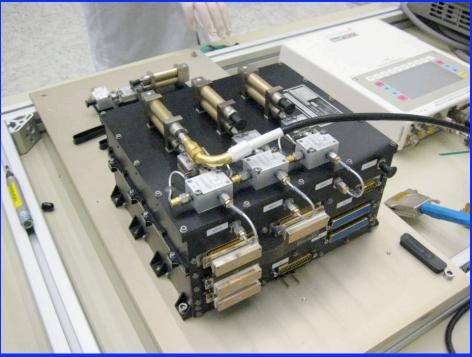
 \Rightarrow the baseline between both S/C is needed with mm accuracy!

TanDEM-X shall fly in close formation (~300 ... 600 m distance) with TSX to obtain simultaneous X-band radar takes for Digital Elevation Models (DEM)

TOR Instrument Package (2F-GPS + LRR) is identical on both satellites

LRR is of CHAMP / GRACE type (small array with 4 CCRs)

ILRS tracking support granted May 2008



TanDEM-X Spacecraft Integration Status 10/2007

Dual-frequency GPS receiver IGOR™

Derived from JPL's BlackJack GPS receivers for Jason-1/-2, CHAMP, GRACE, SAC-C ...

Design especially "hardened" against intense X-Band radar frequencies

TanDEM-X Spacecraft Integration Status 09/2008

TOR TanDEM-X

GFZ Operational Orbit Products

Product	Satellite	Latency	Accuracy
Rapid Science Orbits (RSO)	CHAMP GRACE GPS	1 d 1 d 1 d	5 cm 5 cm 8 cm
Ultra-Rapid	CHAMP	2 h	8 cm
Science Orbits	GRACE-A	2 h	7 cm
(USO)	GPS	2 h	10 cm
Near Real-	CHAMP	15 – 40 min	5 – 20 cm
Time Science	GRACE-A	15 – 40 min	5 – 20 cm
Orbits (NRT)	GPS	30 min	20 cm

TOR Requirer

TanDEM-X

Requirements for GFZ Orbit Products / TSX and TDX

Product Latency Satellite Accuracy TSX 3 cm Precise Science 28 d Orbits (PSO) TDX 28 d 3 cm **Rapid Science** TSX 1 d 5 cm Orbits (PSO) TDX 1 d 5 cm TSX 30 min 7 cm Near Real-Time Science Orbits TDX 30 min 7 cm (NRT)

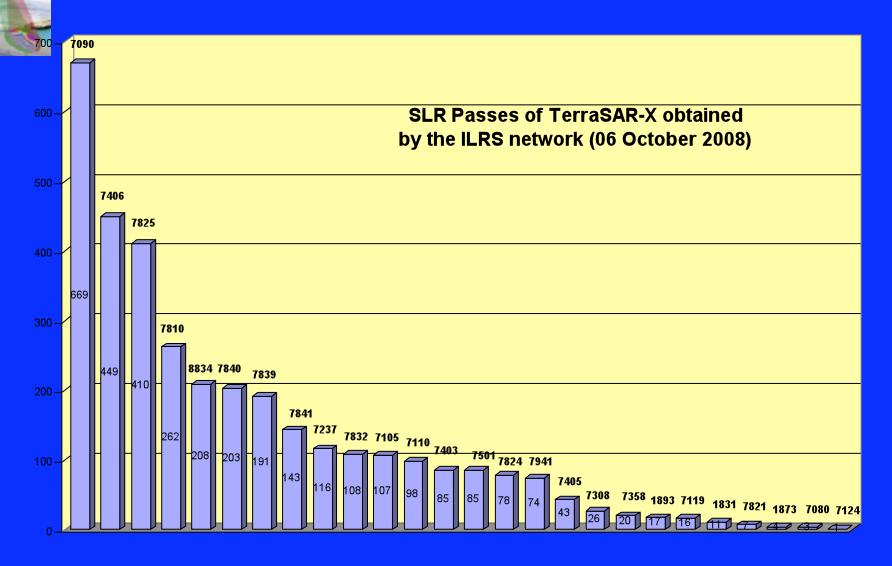
ILRS Tracking Statistics for TerraSAR-X (06 Oct 2008)

TanDEM-X

TOR

Station	PAD ID	Passes	NPs	NPs / Pass
Yarragadee	7090	669	27539	41
San Juan	7406	449	17053	38
Mt. Stromlo	7825	410	9174	22
Zimmerwald	7810	262	8274	32
Wettzell	8834	208	2872	14
Herstmonceux	7840	203	4673	23
Graz	7839	191	6807	36
Potsdam	7841	143	5243	37
Chan <u>g</u> chun	7237	116	2025	17
Riyadh	7832	108	1856	17
Greenbelt	7105	107	4533	42
Monument Peak	7110	98	2836	29
Arequipa	7403	85	1812	21
Hartebeesthoek	7501	85	1780	21
San Fernando	7824	78	1960	25
Matera	7941	74	1082	15
Concepcion	7405	43	505	12
Total		3329	100024	30

 Stations with >30 passes included in Table


 High average number of NPs per pass (excellent for orbit comparison with GPS!)

ILRS Tracking Statistics for TerraSAR-X (06 Oct 2008)

TanDEM-X

TOR

TOR TerraSAR-X Orbit Assessment with SLR

• <u>10-day assessment</u>: comparison of independently generated 10-day orbit solutions by GFZ and DLR (using different SLR analysis tools) yields RMS range biases for the IGOR-based orbits between 2.5 and 3.1 cm.

SLR stations used: Changchun, Graz, Herstmonceux, Hartebeesthoek, Matera, Monument Peak, Mount Stromlo, Potsdam, Wettzell, Yarragadee and Zimmerwald

• <u>5-months-assessment</u>: comparison with IGOR-based precise orbits yields an average orbit agreement of 2-3 cm and a mean station bias below 1 cm (< 0.5 cm for a subset of 6 stations).

SLR stations used: Graz, Herstmonceux, Hartebeesthoek, Monument Peak, Mount Stromlo, Potsdam, Yarragadee and Zimmerwald

(based on contributions by GFZ and DLR)

TOR

 The ILRS support for TerraSAR-X is excellent; the large number of tracked passes allows for a precise assessment of the GPS-derived orbit quality.

• The average orbit agreement is within few centimeters with a mean station bias below 1 cm for a selected sub-network. This is an exciting result for a large, actively attitude-controlled spacecraft!

• The upcoming tandem flight of TerraSAR-X and TanDEM-X poses a new challenge for laser tracking. SLR will be a viable means of external validation of the inter-satellite baseline which is required with millimeter accuracy for deriving world-wide DEMs with meter precision.

The Project expresses special thanks to all contributing ILRS stations for their excellent support!

