

ILRSA CC Status of the products

C. Sciarretta, V. Luceri eGEOS S.p.A., CGS – Matera

G. Bianco Agenzia Spaziale Italiana, CGS - Matera

ILRS AWG Meeting, 1st October 2010, Paris

Contents

- weekly product performance for 2010
 - SSC issues
 - EOP issues (June-July x,y pb; LOD)
- new/revised contributing solutions: ESA, BKG

3D Weekly wrms for sites w.r.t ITRF

Weekly product: 2010 EOP (x,y) issues

3D Weekly STD wrt USNO

Weekly product: detection of the problems

3D Weekly SSC wrms wrt SLRF2005

DGFI and GFZ were the only ACs using 7405 data after earthquake (may-july); DGFI solution exhibited bad SSC/EOP performances and unexpected tighter constraints: the mix of these facts impacted also EOP (x, y).

Since 100710 weekly solution, DGFI has been suspending the contribution to fix the problems, while 7405 has been removed from all the solutions.

7405 coo have been corrected and reinstated
in August 2010.

3D Weekly Mean wrt USNO

Highly variable

EOP w.r.t. USNO 800 BKG 600 400 LoD [us] 200 -200 -400 10/01/0110/02/01 10/03/0110/04/0110/06/0110/07/01 10/08/0110/09/01 10/10/0110/05/01 Time [yy/mm/dd] 800 ASI 600 400 LOD [us] 200 Ô -200 署 -400 10/02/01 10/05/0110/07/01 10/08/0110/09/01 10/10/0110/03/01 10/06/01 10/01/01 10/04/01

Weekly product: BKG Bernese solution

250 Legend bkg 🔫 ilrsa 🔫 200 Global site [mm] 150 100 50 Ô 10/03/0110/08/0110/01/01 10/09/01 10/02/01 10/05/01 10/06/0110/07/01 10/10/01 10/04/01 3D Weekly wrms for sites w.r.t ITRF 30 Legend bkg ilrsa 😽 25 20 Core site [mm] 15 10 5 0 10/10/0110/05/0110/07/0110/09/0110/01/0110/03/01 10/04/0110/06/0110/02/01 10/08/01

3D Weekly wrms for sites w.r.t ITRF

good looseness degreegood agreement with ref/solutions

Weekly product: BKG Bernese solution

Weekly product: ESA solution

ASI Analysis Center activities

ILRS AWG Meeting, October 1st, 2010, Paris

Main activities

- Routine production of daily and weekly solutions
- Station qualification
 - Concepcion data validation and post-earthquake coordinate estimates
 - Simosato data validation
- CRD format test

..... Under construction

New multi-year solution with updated models, ITRF2008 included

ILRSA CC ITRF2008/ITRF2008D evaluation

C. Sciarretta, V. Luceri eGEOS S.p.A., CGS – Matera

G. Bianco Agenzia Spaziale Italiana, CGS - Matera

ILRS AWG Meeting, 1st October 2010, Paris

- 1983-2008 ILRSA v24 transformed into ITRF2008 and ITRF2008D (transformation into SLRF2005 already available)
- analysis of SSC residuals
- analysis of Helmert parameters (Translations&Scale)

All Sites - 3D Residuals WRMS wrt Terrestrial Reference Frame

◆ vs SLRF2005 ◆ vs ITRF2008 ◆ vs ITRF2008D

Core Sites - 3D Residuals WRMS wrt Terrestrial Reference Frame

◆ vs SLRF2005 ◆ vs ITRF2008 ◆ vs ITRF2008D

Site Coordinate Residuals - Statistics

	vs SLRF2005		vs ITRF2008		vs ITRF2008D	
	<wrms> [mm]</wrms>	o WRMS [mm]	<wrms> [mm]</wrms>	σWRMS [mm]	<wrms> [mm]</wrms>	σ WRMS [mm]
All Sites	13.21	<i>18.80</i>	10.93	18.43	10.48	18.54
Core Sites	8.44	5.79	7.13	4.99	6.89	<i>5.12</i>

ITRF2008/ITRF2008D Core sites:

<WRMS> lower of about 20% wrt SLRF2005, ~7mm/11mm (Core/All)

ITRF2008D-ITRF2008 ~ -0.2+/-2.7mm 1993-2008

ITRF2008D-ITRF2008 ~ -0.0+/-2.1mm 1993-2008

ITRF2008D-ITRF2008 ~ -0.2+/-2.2mm 1993-2008

Helmert Parameters comparison

vs SLRF2005 **vs ITRF2008** vs ITRF2008D 1983-2008 1983-2008 1983-2008 Slope σ**slope** Tnot σ**Tnot** Slope σ**slope** Tnot σTnot Slope σ**slope** Tnot Res Res Res σTnot wrms wrms wrms [mm/ [mm/ [mm/ [mm/ [mm] [mm] [mm/ [mm/ [mm] [mm] [mm] [mm] [mm] [mm] [mm] yr] yr] yr] yr] yr] yr] -0.29 0.33 4.16 3.71 +4.06+1.91 3.71 -0.05 0.01 +0.88Tx 0.02 -0.100.01 0.20 0.25 -1.07 0.32 3.82 +0.58+0.00 +0.20+0.06 0.02 -0.02 0.01 0.19 3.63 0.01 0.24 3.42 Ту -5.93 +0.380.03 0.62 7.45 -0.03 0.01 +1.310.29 6.80 +0.000.02 +0.240.45 7.05 Tz -0.30 +1.272.52 Sc 0.01 +0.480.26 3.15 -0.22 0.01 +1.150.19 2.80 -0.07 0.01 0.19 vs SLRF2005 **vs ITRF2008** vs ITRF2008D 1993-2008 1993-2008 1993-2008 Slope σ**slope** Tnot σ**Tnot** Res Slope σ**slope** Tnot σ**Tnot** Res Slope σ**slope** Tnot σTnot Res wrms wrms wrms [mm/ [mm/ [mm/ [mm/ [mm/ [mm] [mm] [mm/ [mm] [mm] [mm] [mm] [mm] [mm] [mm] yr] yr] yr] yr] yr] yr] -0.26 0.02 +3.41 0.42 3.77 -0.05 0.01 +0.930.22 3.56 -0.02 0.02 +0.250.30 3.53 Tx

+0.04

-0.05

-0.04

0.01

0.02

0.01

-0.68

+1.17

+0.70

0.30

0.49

0.22

3.21

6.76

2.24

+0.04

+0.21

-0.30

0.02

0.04

0.02

Tv

Tz

Sc

-0.70

-2.37

+0.53

0.41

0.67

0.31

3.55

6.82

2.88

+0.01

-0.05

-0.18

0.01

0.02

0.01

-0.02

+1.79

+0.44

0.21

0.30

0.22

3.51

6.65

2.55

Helmert Parameters comparison

- ITRF2008 shows a scale slope of about -0.2mm/yr, also w/o 1983-1992 estimates; ITRF2008D shows a scale slope of less than -0.1 mm/yr
- ~3.7, 3.5, 7, 2.5 mm residuals for Tx, Ty, Tz, Scale for both ITRF2008 and ITRF2008D, 0.5mm decrease wrt SLRF2005 for the whole 1983-2008 period
- ~3.5, 3.3, 6.8, 2.2 mm residuals for Tx, Ty, Tz, Scale for both ITRF2008 and ITRF2008D, 0.2-0.5 mm decrease wrt SLRF2005 for the 1993-2008 period

Core Sites - 3D Residuals WRMS wrt Terrestrial Reference Frame

◆ vs ITRF2008 ◆ vs ITRF2008D

Weekly product: 2009-2010 performance

All Sites - 3D Residuals WRMS wrt Terrestrial Reference Frame

◆ vs ITRF2008 ◆ vs ITRF2008D

Weekly product: 2009-2010 performance

ITRF2008D - ITRF2008

◆ Tx ◆ Ty + 20mm ◆ Tz + 40mm ◆ Sc + 60mm

ILRS Analysis Working Group Meeting, Paris, October 1, 2010

Report of DGFI/AC

Horst Müller

Deutsches Geodätisches Forschungsinstitut, München E-Mail: mueller@dgfi.badw.de

Routine POS+EOP Solution

Delivery of weekly solution stopped

- Problem with high residuals own calculations show ~1 cm r.m.s.
- X and Y rotion not free (3-5 cm constraints)

100529 Rx: 0.0421775 Ry: 0.0429 Rz: 0.1019 (m) 100605 Rx: 0.0414928 Ry: 0.0393 Rz: 0.1088 (m) 100612 Rx: 0.0462859 Ry: 0.0470 Rz: 0.1196 (m) 100619 Rx: 0.0580013 Ry: 0.0533 Rz: 0.1198 (m) 100626 Rx: 0.0395798 Ry: 0.0363 Rz: 0.1142 (m)

Software upgrade until end of October

New EDC Server (edc.dgfi.badw.de)

New Linux Server, Intel Core2 Duo, 3.0 Ghz

- 4 GByte ram
- 1.3 Tbyte disk.
- Second identical system as backup and mirror
- Operational, with minor problems, since September 14
- Old server still online, accessible only by ip-address (129.187.165.3) without data missing. Offline end of the year.
- The functionality of EDC will be kept, email exploders, SLRMAIL,SLREPORT and URGENT mail are available as until now

Structure of FTP

/pub/slr /cpf_predicts /data /frd /frd crd /npt /npt_crd /npt_from_crd /quar_crd /test crd /products /summaries

ILRS Analysis Working Group Meeting, Paris, October 1, 2010

Structure of FTP

/npt_crd /satellite <lageos1> /year <2010> /station files

e.g.

/pub/slr/data/npt_crd/lageos1/2010/7845_lageos1_crd_20100312_01_00.npt /npt

/satellite

/year /hourly, daily, monthly and yearly files

e.g.

/pub/slr/data/npt/lageos1/2010/lageos1.20100924_1000.qlk

Structure of FTP

/cpf_predicts

/2006 /2007 /2008 /2009 /2010 /CNE /COD /current /ESA /GFZ /HTS /JAX /MCC /NRL /SGF /SHA /UTX

e.g.

/pub/slr/cpf_predicts/2010/lageos2/lageos2_cpf_100731_7121.hts

/products /pos+eop /year /yymmdd /daily /year /month

Station Qualification

New stations since last AWG meeting in Vienna:

- Arequipa (7403)
- Beijing (7249) (? passes on quarantine dir. for Aug. 2010)
- Concepcion (7405)
- Haleakala (7119)
- Simosato (7838)
- Tanegashima (7358)
- Tokyo, Koganai (7308)
- Tokyo, Koganai (7328, no Lageos passes)
- Hartebeesthoeg and Tahiti(MOBLAS-8) no quarantine necessary

Station Qualification

Actions:

daily check of the CDDIS quarantine directory automatic report generation

First experiences: Good cooperation it takes sometimes longer to fulfil the 20 pass criteria (weather conditions,..)

Problems:

information flow, for new quarantine stations Some stations have no Lageos capability (7328)

Daily range- and time bias computation

On a daily basis for Lageos-1/2 and Etalon-1/2 processing of range- and time biases for all stations

Contact with stations in case of abnormal high values

Soon Leo's included

Summary available fromCODE

Simosato report

year	mm dd	hh mm		range-bias	sigma	prec.est. no	of	edit.	satellite
				[cm]	[[cm] [cm]	C	observati	ons
2010	5 17	11:27	:	6.55	2.16	1.45	4	0	lageos2
2010	5 26	01:35	:	1.05	1.19	4.26	5	0	lageos2
2010	5 26	09:23	:	-0.59	2.84	0.48	11	0	lageos1
2010	5 26	09:57	:	4.93	0.43	1.36	20	0	lageos2
2010	5 27	08:17	:	3.42	0.94	2.69	11	0	lageos2
2010	5 27	11:14	:	13.46	2.50	0.60	17	0	lageos1
2010	5 27	12:14	:	10.16	1.42	3.46	5	0	lageos2
2010	5 27	14:47	:	-2.60	3.92	0.73	3	0	lageos1
2010	5 28	01:39	:	2.07	0.55	1.68	13	0	lageos2
2010	6 2	00:16	:	1.75	0.90	1.74	9	0	lageos2
2010	6 2	08:43	:	1.64	0.38	2.13	17	0	lageos2
2010	6 2	10:03	:	4.72	1.90	0.35	34	0	lageos1
2010	6 2	16:48	:	7.46	3.47	0.94	14	0	lageos1
2010	63	06:58	:	2.44	0.86	2.38	7	0	lageos2
2010	63	08:50	:	2.85	1.68	0.88	8	0	lageos1
2010	63	10:49	:	6.51	1.28	2.05	8	0	lageos2
2010	63	12:20	:	10.46	2.93	0.38	9	0	lageos1
2010	63	15:36	:	8.24	4.15	0.46	10	0	lageos1
2010	6 4	00:24	:	3.29	0.79	2.28	13	0	lageos2
2010	68	12:30	:	12.09	4.00	0.75	8	0	lageos1
2010	68	15:47	:	12.25	4.86	0.50	12	0	lageos1
2010	69	07:26	:	7.34	1.45	2.56	10	0	lageos2
2010	69	07:59	:	-7.06	5.95	5.31	8	0	lageos1
2010	69	11:06	:	9.33	5.29	0.41	17	0	lageos1

Haleakala report

year r	mm dd	hh mm	ra	ange-bias	sigma	prec.est.	no of	edit.	satellite
				[Cm]	[Cm]	[Cm]	observa	tions	
2010	8 15	00:51	:	-18.08	4.13	0.50	14	0	Lageos1
2010	8 18	00:16	:	-13.86	5.16	0.66	3	0	Lageosl
2010	8 19	02:20	:	-10.19	5.26	1.37	12	0	Lageos1
2010	8 19	08:55	:	-16.68	4.60	1.60	10	0	Lageos1
2010	8 20	09:21	:	-19.87	1.49	0.57	2	0	Lageos2
2010	8 21	07:37	:	-16.79	1.14	0.37	17	0	Lageos2
2010	8 23	20:22	:	-20.94	0.43	0.71	18	0	Lageos2
2010	8 25	20:33	:	-21.00	0.53	0.39	26	0	Lageos2
2010	8 26	18:51	:	-17.60	0.72	0.55	20	0	Lageos2
2010	8 27	20:53	:	-20.33	0.77	0.59	20	0	Lageos2
2010	8 28	18:52	:	-19.61	0.45	0.36	25	0	Lageos2
2010	8 30	19:35	:	4.09	0.81	0.47	11	0	Lageos2
2010	8 31	21:18	:	0.57	0.97	0.55	15	0	Lageos2
2010	91	19:21	:	3.69	0.42	0.85	25	0	Lageos2
2010	95	00:10	:	1.91	0.57	0.41	23	0	Lageosl
2010	98	18:05	:	2.34	0.60	0.43	26	0	Lageos2
2010	98	22:15	:	1.12	0.93	0.34	21	0	Lageosl
2010	99	01:47	:	1.47	1.14	0.39	15	0	Lageosl
2010	9 10	18:22	:	3.10	0.70	0.62	21	0	Lageos2
2010	9 19	04:57	:	-5.22	4.06	0.60	16	0	Lageos2
2010	9 21	04:59	:	1.96	3.56	0.40	22	0	Lageos2
2010	9 21	09:07	:	-1.53	2.81	0.82	9	0	Lageos2
2010	9 2 2	01:45	:	-1.31	1.65	0.37	16	0	Lageosl
2010	9 23	23:06	:	-1.39	0.65	0.53	10	0	Lageosl
2010	9 24	02:35	:	1.85	2.44	0.32	10	0	Lageos1

SLR-Discontinuities, Data-Handling

Status

2 File available updated regularly:

- ILRS_Data_Handling_File.snx
- ILRS_Discontinuities_File.snx

Problems

- Update
- Content, which kind of biases, edited data, ... to include
- Handling of 1999 CDDIS data

Files are available from DGFI ILRS pages.

http://ilrs.dgfi.badw.de/fileadmin/data_handling/ILRS_Data_Handling_File.snx http://ilrs.dgfi.badw.de/fileadmin/data_handling/ILRS_Discontinuities_File.snx

SLR-Discontinuities, Data-Handling

Blocks in the "ILRS Data Handling File"

- Data records to be deleted in CDDIS data sets of 1999
- Data corrections converted from CDDIS (Van Husson tables)
- List of stations with mandatory range biases to be estimated
- List of station dependent range biases adopted by the ILRS/AWG
- List of known uncorrected station biases

7941	mm	А	07:047:00000	07:053:00000	R	-14.00	0.00	engineering	bias	
7941	mm	А	07:053:00000	07:187:39600	R	-28.00	2.00	engineering	bias	
7941	mm	А	07:187:39600	07:241:28800	R	-22.00	2.00	engineering	bias	
7941	mm	А	07:242:00000	07:295:50400	R	-25.00	3.00	engineering	bias	
7941	ms	А	10:221:61200	10:223:43200	Т	-100.00		uncorrected	time	bias

Large biases are not a problem for analysis but constant biases in cm resp. 0.1 msec. level are critical e.g Simeiz or Shanghai

ILRS Analysis Working Group Meeting, Paris, October 1, 2010 Large Lageos-1 biases 2009/2010

1893	3103.41608	101820.30	10182.03	0.00	0.84	1487
7821	3104.20529	-132549.00	-13254.90	0.00	0.98	1487
1824	3136.44421	-110320.00	-11032.00	0.00	1.23	1490
1824	3146.30243	201087.60	20108.76	0.00	0.01	1492
1824	3146.46155	-2.92	102.97	-108985.00	77.06	1492
1873	3172.45638	-244738.00	-24473.80	0.00	0.52	1496
1873	3173.25509	-308736.00	-30873.60	0.00	0.01	1496
1873	3227.26204	1376822.00	137682.20	0.00	1.39	1503
1879	3245.11105	51.97	19.32	-295186.00	24.76	1506
1893	3254.21188	200.30	314.83	153242.10	130.99	1507
7249	3254.17589	-53156.90	150.61	1684.30	54.84	1507
1873	3300.37605	394.31	16.79	-100140.00	9.76	1514
1873	3308.22190	54.65	13.43	-99987.00	9.53	1515
1873	3308.36007	-154.54	18.89	-99999.00	8.84	1515
1868	3368.00973	671778.10	67177.81	0.00	1.93	1524
1824	3381.46211	130892.90	13089.29	0.00	1.21	1525
1824	3385.23152	96.16	120.27	-105913.00	72.39	1526
1824	3385.37880	57.56	40.07	-105937.00	23.86	1526
1824	3400.28153	-5.58	4.68	13530.10	2.83	1528
7249	3397.12893	-53.30	13.51	969291.20	21.77	1528
7105	3467.30622	-99152.90	-9915.29	0.00	0.20	1538
7406	3483.52233	278097.20	27809.72	0.00	0.99	1540
7406	3483.67095	115160.30	11516.03	0.00	0.10	1540
7406	3483.94697	252170.10	25217.01	0.00	0.00	1540
7308	3688.39662	-1032.17	31.21	11029.50	16.53	1569
7308	3688.54399	-1011.89	22.59	13593.20	15.82	1569
7810	3727.70403	-500.78	24.82	32497.70	3710.66	1575
7941	3873.34851	-8.19	8.99	100003.80	4.15	1596
7941	3873.46950	5.18	41.33	99998.80	16.63	1596
7941	3874.14193	23.59	7.18	99976.60	4.76	1596
7941	3874.29445	23.99	8.05	99989.20	3.06	1596
7941	3874.43439	1.24	14.29	99989.70	8.19	1596
7941	3874.57481	25.96	7.70	100004.00	4.59	1596
7941	3875.08641	-87.25	5.73	99962.10	3.55	1596

Helmert parameters, station positions, Earth Orientation Parameters, and a priori residual time series.

New GRGS AC solution.

09/30/2010

I - Analyses for the ILRS combined v24 solution over the time period 1993.0 - 2008.9

* Computation of transformations between ILRS solution and ITRF2005/ITRF2008

- * For each computation
 - Projection of the variance-covariance matrix
 - Raw residuals rejected at 10 cm and then normalized residuals at 4
 - For the statistics after transformation, all the position residuals are considered

Weekly Helmert transformations (1/3)

w.r.t. ITRF2005

Results for TX translation (mm)

Weighted mean = -0.83 Weighted standard deviation = 3.97 WRMS = 4.05

Results for TY translation (mm)

Weighted mean = -0.13 Weighted standard deviation = 3.76 WRMS = 3.76

Results for TZ translation (mm)

Weighted mean = 1.29 Weighted standard deviation = 7.35 WRMS = 7.46

Results for scale (ppb)

Weighted mean = -1.91 Weighted standard deviation = 0.69 WRMS = 2.03

w.r.t. ITRF2008

Results for TX translation (mm)

Weighted mean = -0.01 Weighted standard deviation = 3.53 WRMS = 3.53

Results for TY translation (mm)

Weighted mean = 0.06 Weighted standard deviation = 3.36 WRMS = 3.36

Results for TZ translation (mm)

Weighted mean = 0.76 Weighted standard deviation = 7.02 WRMS = 7.06

Results for scale (ppb)

Weighted mean = -0.47 Weighted standard deviation = 0.41 WRMS = 0.63

Reduction of all biases and WRMS \rightarrow better consistency with ITRF2008

Scale factor

Daily polar motion series (2/3)

w.r.t. ITRF2005

Results for Xp (µas)

Weighted mean = 40 Weighted standard deviation = 228 WRMS = 232

Results for Yp (µas)

Weighted mean = 43 Weighted standard deviation = 222 WRMS = 226

w.r.t. ITRF2008

Results for Xp (µas)

Weighted mean = 6 Weighted standard deviation = 203 WRMS = 203

Results for Yp (µas)

Weighted mean = -35 Weighted standard deviation = 203 WRMS = 206

Better stability of the series achieved with ITRF2008

Weekly station position series WRMS (3/3)

Comparison between ITRF2005 and ITRF2008

All stations (mm)

East component Median values = 11.87 / 11.14

North component Median values = 14.33 / 10.77

Up component Median values = 13.93 / 8.74 20 core stations (mm)

East component Median values = 7.23 / 6.56

North component Median values = 8.09 / 7.53

Up component Median values = 7.61 / 5.65

Better stability of the series for the three components achieved with ITRF2008

II - Analyses for the ILRS combined v24 solution over the time period 1982.9 - 1993.0

* Computation of transformations between ILRS solution and SLRF2005/ITRF2008

- * For each computation
 - Projection of the variance-covariance matrix
 - Raw residuals rejected at 10 cm and then normalized residuals at 4
 - For the statistics after transformation, all the position residuals are considered

Helmert transformations (1/3)

w.r.t. SLRF2005

Results for TX translation (mm)

Weighted mean = 4.92 Weighted standard deviation = 8.65 WRMS = 9.95

Results for TY translation (mm)

Weighted mean = 0.31 Weighted standard deviation = 7.79 WRMS = 7.80

Results for TZ translation (mm)

Weighted mean = -14.55 Weighted standard deviation = 21.39 WRMS = 25.88

Results for scale (ppb)

Weighted mean = -0.15 Weighted standard deviation = 1.23 WRMS = 1.24

w.r.t. ITRF2008

Results for TX translation (mm)

Weighted mean = 3.99 Weighted standard deviation = 6.60 WRMS = 7.72

Results for TY translation (mm)

Weighted mean = 2.36 Weighted standard deviation = 6.51 WRMS = 6.93

Results for TZ translation (mm)

Weighted mean = -4.06 Weighted standard deviation = 19.93 WRMS = 20.34

Results for scale (ppb)

Weighted mean = 0.06 Weighted standard deviation = 1.11 WRMS = 1.11

Better WRMS and reduction of the TZ bias with ITRF2008

Polar motion series (2/3)

w.r.t. SLRF2005

Results for Xp (µas)

Weighted mean = 348 Weighted standard deviation = 700 WRMS = 782

Results for Yp (µas)

Weighted mean = 84 Weighted standard deviation = 738 WRMS = 743

w.r.t. ITRF2008

Results for Xp (µas)

Weighted mean = 304 Weighted standard deviation = 679 WRMS = 744

Results for Yp (µas)

Weighted mean = -223 Weighted standard deviation = 689 WRMS = 724

Better stability of the series achieved with ITRF2008 in spite of the larger bias for Yp

Weekly station position series WRMS (3/3)

Comparison between SLRF2005 and ITRF2008

All stations (mm)

East component Median values = 19.44 / 13.59

North component Median values = 21.00 / 18.98

Up component Median values = 21.29 / 12.91 16 core stations (mm)

East component Median values = 15.22 / 14.02

North component Median values = 18.23 / 16.75

Up component Median values = 13.47 / 11.82

Better stability of the series for the three components achieved with ITRF2008

III - Computations with the MATLO software over the time period 1995.0 - 2010.3

* MATLO software computes the SLR a priori residuals (Observed minus Computed)

* Two computations are carried out :

- LAGEOS orbits computed with SLRF2005 and SLRF2005 as a priori TRF
- LAGEOS orbits computed with ITRF2008 and ITRF2008 as a priori TRF

* The first solution is called 'GRGS V05' and the second one 'GRGS V08'

* For both computations, only the TRF changes. All the models, the EOP a priori series, the measurement corrections (range biases, etc.) and the eccentricities are the same

A priori residual RMS values per satellite (1/1)

Comparison between the GRGS V05 and V08 solutions

All stations (mm)

LAGEOS-1 Median values = 30.19 / 24.14

LAGEOS-2 Median values = 26.66 / 25.30 20 core stations (mm)

LAGEOS-1 Median values = 17.80 / 17.16

LAGEOS-2 Median values = 15.73 / 14.33

Improvement of a priori residuals with ITRF2008

IV – New GRGS AC solution over the time period 1995.0 - 2010.3

- * GINS and MATLO software used
- * Two LAGEOS orbits computed with ITRF2008
- * Loose constrained weekly solutions for station positions, EOP and possible range biases
- * Weekly transformation parameters computed w.r.t. ITRF2008

Reference System Effects (1/7)

Strong value = corresponding parameter loosely defined

RZ = 7 914

Orientation of the weekly Terrestrial Frames not defined

Transformation Parameters (2/7)

TX translations (mm)

Weighted mean = -0.86 Weighted standard deviation = 4.22 WRMS = 4.31

Transformation Parameters (3/7) TY translations (mm)

Weighted mean = 0.34 Weighted standard deviation = 3.51 WRMS = 3.52

Transformation Parameters (4/7) TZ translations (mm)

Weighted mean = 1.14 Weighted standard deviation = 7.07 WRMS = 7.16

Weighted mean = -0.54 Weighted standard deviation = 0.43 WRMS = 0.69

Polar motion series (6/7)

Results for Xp (µas)

Weighted mean = 40 Weighted standard deviation = 213 WRMS = 217

Results for Yp (µas)

Weighted mean = -68 Weighted standard deviation = 222 WRMS = 232

Weekly station position series WRMS (7/7)

All stations (mm)

East component Median values = 12.28

North component Median values = 13.88

Up component Median values = 11.51 20 core stations (mm)

East component Median values = 6.63

North component Median values = 7.07

Up component Median values = 5.84

Activities since last AWG

- Completed ESA benchmark (thank you Cecilia!)
- Verified pressure correction formulae for San Fernando
- Station validation for Simosato, Concepcion, Koganei (7308 & 7328), Tanegashima and Haleakala (thank you Horst!)
- CRD validation for several stations
- Daily EOP process review with USNO
- ITRF2008 validation (all years 1983 now)
- Response to GB on new NP formulation
- Site log compilation (Excel spreadsheets & SCH-SCI database)
- Updated version of ILRS AWG Products website
- Atmospheric dealiasing application tests and test-file generation
- BLITS data analysis
- Implementation of ILRS-B s/w, hosting of DGFI CC at JCET after AWG
- ORBEX follow-up with IGS

San Fernando pressure error

First period: Since January 1st, 2006 to December 31st 2008

Second period: Since January 1st, 2009 to December 10th 2009

Correction formula: F(T) = 0.40402 * (T - 2006) + 1.38412 (r.m.s. = +/- 0.45)

Correction formula: F(T) = 1.2685 * (T - 2009) + 3.0078 (r.m.s. = +/- 0.45)

In both cases T = year + day of the year [1..365]/365, except for 2008 where 365

Pressure Measurements: Monthly Averages 1030,0 1028,0 1026,0 1024,0 Pressure (hPa) 1022,0 1020,0 1018,0 1016,0 1014,0 1012,0 1010,0 1999 2000 2001 2002 2003 2004 2006 2007 2008 2009 2005 Year Barometer at ROA NCEP Monthly Averages Barometer at Rota Airport

Pressure Measurements: Monthly Averages

should be replaced by 366.

-

ILRS AWG Paris, Oct. 1, 2010

Daily EOP Product for USNO

ILRS AWG Paris, Oct. 1, 2010

3

Daily EOP Product - 1

ILRS AWG Paris, Oct. 1, 2010

4

Daily EOP Product - 2

ILRS AWG Paris, Oct. 1, 2010

5

Updated JCET Website

900	EVALUATION, VALIDATION AND MONITORING OF ILRS COMBINATION I	RODUCTS	
+ @ http://geodesy.jcet.umbc.edu/ILRS_QCQA/	9. 	¢	Q• Google
EVALUATION, VALIDATION AND	UATION AND MONITORING OF ILRS AWG PF	ODUCTS	NASA
COM vs 250 Mean <u>5td Dev.</u> 0.51232 5td Dev. 0.51232 6.10799 4.74673 12.497 100 100 -50 -100 -50 -100 -50 -100 -50 -50 -50 -50 -50 -50 -50 -	s SLRF2005 From ilrsa	Combination Center: Analysis Center: Start (MM-DD-YYYY): End (MM-DD-YYYY): Group of results: Quantities to display: Station: ✓ Tx ✓ Ty ✓ Ty ✓ Tz Plot Size Y axis	 ILRSA ILRSB COM I-1-1983 8-8-2010 HELMERT TRANS. ORIGIN OFFSETS w.r.t SLRF2005 N/A Green X Filled Square Filled Square Filled Square Filled Circle Submit
01/82 01/85 01/88 01/91 01/94 (View full) Get data file) Get PDF UMBC http:	//geodesy.jcet.umbc.edu/ILRS	QCQA/	International Laser Ranging Service

Updated JCET Website - cont.

Updated JCET Website: PDF output

7090 Yarragadee COM vs SLRF2005 From ilrsa

ILRS AWG Paris, Oct. 1, 2010

Update JCET Website – cont.

0 0				🖹 NEU 7090 data.txt	
observation_	date	l n l	е	l u	
1983-01-10	1	206.91	- I	-78.76 I 97.2	
1983-01-25	1	104.44	- I	0.24 31.74	
1983-02-09	1	22.69	1	13.23 46.84	
1983-02-24	1	72.79	1	130.91 18.61	
1983-03-11	- I	-25.48	- I	20.23 I 24.35	
1983-03-26	- I	15	1	19.32 I 10.74	
1983-04-10	1	25.72	1	19.08 1.62	
1983-04-25	- I	3.92	1	-17.32 4.38	
1983-05-10	- I	253.06	- I	-115.11 -442.14	4
1983-11-06	- I	32.41	- I	22 -11.27	
1983-11-21	- I	19.36	- I	-16.51 -8.81	
1983-12-06	- I	34.47	- I	-27.94 -11.25	
1983-12-21	- I	25.75	- I	-7.78 7.43	
1984-01-05	- I	52.74	- I	23.71 47.6	
1984-01-20	- I	12.06	- I	-16.76 l -3.63	
1984-02-19	- I	4.71	1	-7.24 12.19	
1984-03-05	- I	32.68	- I	77.14 31.24	
1984-03-20	- I	32.99	- I	-36.63 l 20.69	
1984-04-04	- I	136.37	- I	135.71 I 54	
1984-04-19	- I	83.28	- I	23.6 -4.1	
1984-05-04	- I	72.55	- I	39.1 I 5.83	
1984-05-19	- I	28	I	7.48 -3.14	
1984-06-03	- I	27.88	- I	3.71 l -3.35	
1984-06-18	- I	7.92	1	-8.33 I 2.1	
1984-07-03	- I	17.41	- I	-2.57 l 10.96	
1984-07-18	- I	8.85	1	11.41 -7.34	
1984-08-02	- I	9.94	1	12.08 -2.9	
1984-08-17	- I	16.4	1	19.9 l 0.28	
1984-09-01	- I	6.5	1	6.05 I 9.03	
1984-09-16	- I	17.08	- I	-1.15 5.84	
1984-10-01	- I	19.31	1	4.33 I 0.99	2
1984-10-16	- I	3.02	1	6.6 l 2.15	
1984-10-31		13.47		14 47 -1 28	

Update JCET Website – cont.

Site Log Book @ CDDIS

	0		_				site_log_bool	.03-09-2010.xls>	¢				
			6		r	SI	heets Charts S	imartArt Graphics	WordArt		v		
•	Site Number	Location	Entry	Laser Type	Number of Amplifiers	Primary Wavelength [nm]	Primary Maximum Energy [mJ]	Secondary Wavelength [nm]	Secondary Max. Energy [mJ]	Xmit Energy Adjustable	Pulse Width (FWHM) [ps]	Max. Repetition Rate [Hz]	Fullw. Beam Divergence []"
2	7848	Ajaccio	1	ND:YAG	1	1064	60	NA	NA	NO	100	10	60
3	7848	Ajaccio	2	ND:YAG	1	532	20	NA	NA	YES	35	10	30
4	1879 7045	ALTAY APOLLO	1	ND:YAG ND:YAG	2	1064	5 115	532	2.5	NO	150	300 20	10 (calculated)
6	7403	Arequipa	1	ND:YAG	1	1064	200	532	100	NO	200	5	100
7	7357	Beijing		ND:YAG	1	1064	80	532	50	NO	30-50	20	100
8	7249	Beijing	2	ND:YAG	3	1064	2 20/160-	532	30	NU	200	10	0-200
9	7249	Beijing	2	ND:Vanadate	2	1064	2.28/1kHz	532	1.45/1kHz	NO	10.8/532nm	2000	0-200
10	7811	Borowiec	1	ND:YAG	2	1064	not used for laser ranging	532.1	50	YES	40	10	80
12	7604	Brest	1	ND:YAG	1	1064		532	20	YES	35	10	30
13	7370	Burnie	1	ND:YAG	1	1064	0000	532	20	YES	35	10	30
14	7548	Cagliari	1	ND:YAG	<u>ा</u> ः	1064	N.A.	532	80	NO	100	10	100-200
15	7830	Chania	1	ND:YAG	1	1064	<u></u>	532	20	YES	35	10	30
17	7237	Changchun	1	ND:YAG	3	1064	250	532	150	NO	200	20	1-30
18	7237	Changchun	2	ND:Vanadate, Diode Pumped	1 Regenerative	1064	N.A.	532	3.0 mJ @ 1 kHz	NO	<25	10000	82.5
19	7405	Concepcion	1	Cr:LiSAF/Ti:Sa	3	847nm	60	423.5	30	YES	80/56	10	2-60
20	7405	Concepcion	2	Ti:Sa	2	847nm	10	423.5	5	YES	40/28	100	2-60
21	7405	Concension		Cril ISAE/Tires	2	84700	60	423 5	30	YEC	80/56	10	2-60
	7100	concepción		GALIGARY H.3d	5	047110		723,3	30	110	60/30	10	2-00
22	7405	Concepcion	2	Ti:Sa	2	847nm	10	423.5	5	YES	40/28	100	2-60
23	1824	Golosiiv	1	ND:YAG /LS-2151	1	1064	80	532	30	YES	70	15	0.5-10
24	7250	curre	4	NDVAC	r	522.00	50/250	NONE	NONE	Nores	50/250	10	2.25
24	E EL 0. Form 1	System Reference	Point 2.5	ite Location 3. System	n Info 4. Telescope	5. Laser 6a. Receiver 6b.	Receiver 6c. Receiver 7. Tra	cking Capabilities 8.	Calibration	NODE	50/250	10	3-7.5

- All past site logs were compiled into a new Excel spreadsheet, collecting information that is useful for characterizing the mode of operation of each site over time
- The information from the Site Configuration and Site Change files were also "mined" and put in an online data base
- Users can query the data base to collect information for all sites, a particular site or group of sites, etc.
- Location:

http://geodesy.jcet.umbc.edu/sch_sci_query/

SCH/SCI Query Engine

900	SCH/SCI Query Engine					
 + @ http://geodesy.jcet.umbc. 	edu/sch_sci_query/	¢				
EVALUATION, VALIDATION AND	SCH/SCI Query Engine					

SCH/SCI Query Engine

SCH/SCI Query Engine

http://geodesy.jcet.umbc.edu/sch_sci_query/process_query.php?query=select+*+from+sch+where+station_cdp_no%3D7105 00 http://geodesy.jcet.umbc.edu/sch_sci_query/process_query.php?query=select+*+from+sch+where+stat C Q Google 4 + EVALUATION, VALIDATION AND . http://geodesy.jcet.umbc.edu/sch..

Query Result

[SELECT * FROM SCH WHERE STATION_CDP_NO=7105]

DATE	STATION CDP NO	SOD NO	SCH	DESCRIPTION
1988- 07-25	7105	712	1	Baseline configuration: MCP-PMT, cascaded constant fraction discriminator, HP5370 timer, Setra barometer, cesium beam frequency standard, TV line-10, az-el mount, ND: YAG Laser wavelength 532.1 nm, 200 ps laser, 200 meter target with anti-parallax
1989- 06-15	7105	714	2	Anti-parallax modification for calibration
1989- 07-13	7105	714	3	Transmit delay modification
1989- 08-03	7105	715	4	Original anti-parallax re-installed
1990- 09-01	7105	718	5	Etalon tracking modifications (h/w and s/w)
1990- 12-10	7105	719	6	Anti-parallax modification for calibration
1991- 02-01	7105	719	7	HP computer upgrade
1991- 07-10	7105	720	8	Optical attentuation mechanism, anti-parallax and CCD camera modifications
1991- 07-23	7105	721	9	Optical attentuation mechanism and CCD modifications removed; original receive package installed
1991- 10-18	7105	722	10	Optical attentuation mechism and CCD camera modifications installed
1991- 12-09	7105	723	11	Tracking and analysis software upgrade
1992- 07-10	7105	724	12	Mount refurbishment
1994- 09-01	7105	724	13	Mount observer automation
1994- 12-22	7105	724	14	New normal point generation software (VM)
1995- 09-15	7105	724	15	Paroscientific barometer replaces Setra
1996-	7105	724	16	Controller upgrade project complete

SCH/SCI Query Engine

00	http	://geodesy	.jcet.ı	umbc.edu/sch_sci_query/process_query.php?query=select+*+from+sci+					
	+ http://geodesy.je	cet.umbc.ed	u/sch	_sci_query/process_query.php?query=select+*+from+sci+ C Qr Google					
EVAL	UATION, VALIDATION AND	P	nttp://	geodesy.jcet.umbc.edu/sch					
Que	Query Result								
[SELF	[SELECT * FROM SCI]								
Get data	a file								
DATE	STATION_CDP_NO	SOD_NO	SCI	DESCRIPTION					
1997- 01-20	1824	8101	1	Baseline configuration (PMT79+10ps Counter)					
2000- 01-20	1824	8101	1	Baseline configuration discontinued					
2000- 01-20	1824	8101	2	Conf2:PMT79-STOP detector+SR620 counter,GPS+Rb controlled system clock, APD-START detector.					
1995- 04-14	1884	4401	1	Baseline configuration.					
2000- 06-21	1884	4401	2	New baseline configuration					
2001- 01-16	1884	4401	3	New baseline configuration					
1989- 01-01	7080	2403	1	Varian PMT					
1990- 09-25	7080	2412	2	МСР					
1995- 01-01	7080	2419	3	APD					
2007- 05-26	7080	2419	4	HAM+HAM amp					
2007- 05-26	7080	2419	5	HAM+Avantek amp					
1987- 08-26	7090	507	1	Baseline configuration					
1996- 08-26	7090	513	2	High sensivity receiver (phase 1) for high satellite tracking					
1988- 07-25	7105	712	1	Baseline configuration					
1996- 02-01	7105	724	2	High sensivity single channel receiver installed for high satellite tracking operations					
1988- 12-12	7109	806	1	Baseline configuration					

 Re-analyzed all LAGEOS 1 & 2 data from 1983 to present, using ITRF2008 and ITRF2008D as a priori

ILRS AWG Paris, Oct. 1, 2010

 $\Delta RMS : RMS_{2008D} - RMS_{2008}$ if $\Delta RMS > 0 \rightarrow RMS_{2008} < RMS_{2008D}$

1996/1 1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Date

Weekly RMS [mm]

De-aliasing product test

Tested ITG (Univ. Bonn) GRACE model and GRACE-based daily de-aliasing product for 2002/08 to 2009/08 ITRF2008 No De-aliasing Correction

Date

De-aliasing product test – cont.

Tested ITG (Univ. Bonn) GRACE model and GRACE-based daily de-aliasing product for 2002/08 to 2009/08 ITRF2008 with ITG De-aliasing Correction

Date

- No obvious difference between the use of a static vs. a daily changing gravity model
- We are examining the station height behavior, where we expect to see some difference
- Difference in mean RMS is 0.5 mm
- This is consistent with prior tests using a dealiasing product based on ECMWF 6-hr fields only

BLITS 7-day Arc fits

CoM values for Geodetic SLR targets: Current accuracy and prospects towards all-new, 3D, version

Graham Appleby Space Geodesy Facility, Herstmonceux, UK

ILRS AWG meeting 1 Oct 2010 Obs de Paris, France

Magnitude of effect

• Depending upon the stations' technology, there is a range of appropriate CoM values;

For LAGEOS the total range is ~6mm (Minott *et al*, 1993, Otsubo & Appleby, 2003)
 For ETALON the total range is ~5cm (Otsubo & Appleby, 2003)

- Station technology:
 - multi-photon returns:
 - photomultiplier or first-photon detection
 - single photon return

Scope

- Tables of CoM values for LAGEOS and for ETALON for each ILRS station;
 - Already presented (UAW2009, AWG 2010 Vienna)
- Recent snapshot only
 - Mostly no 'history' of site changes
 - Can impact on recommended CoM
 - Missing stations
- Back to the log files

Extraction from logfiles

- To compute CoM, require:
- Detector type, energy regime, editing criteria, all as functions of date
- Logfiles contain this information but we need to extract it from the more comprehensive data record
- Script written/under development
- Ultimately will generate tables of CoM values

Example output from the script

7403 arel_20090320.log Detector Type MCP Date Installed 1992-07-10 Date Removed (yyyy-mm-dd) Return-rate Controlled YES Mode of Operation Few to Multi Ph Laser Type ND:YAG Pulse Width (FWHM) 200 5 Max. Repetition Rate Date Installed 1992-07-10 Date Removed (yyyy-mm-dd) Cal Return-rate Control YES Cal Mode of Operation FEW to MULTI Cal Single Shot RMS 5 Cal Edit Criterion **ITERATIVE 3.0 SIGMA** Sat Edit Criterion **ITERATIVE 3.0 SIGMA** LAG Single Shot RMS 8
More complex example

7845 grsm_20090514.log	
Detector Type	APD
Date Installed	1992-09-14
Date Removed	(yyyy-mm-dd)
Return-rate Controlled	NO
Mode of Operation	Single to Multi
Detector Type	APD
Date Installed	2009-06-01
Date Removed	(yyyy-mm-dd)
Return-rate Controlled	NO
Mode of Operation	Single to Multi
Laser Type	ND:YAG
Pulse Width (FWHM)	20
Max. Repetition Rate	10
Date Installed	2009-01-01
Date Removed	(yyyy-mm-dd)
Laser Type	ND:YAG
Pulse Width (FWHM)	200
Max. Repetition Rate	10
Date Installed	2009-01-01
Date Removed	(yyyy-mm-dd)
Cal Return-rate Control	YES
Cal Mode of Operation	SINGLE PH
Cal Single Shot RMS	1.4
Cal Edit Criterion	ITERATIVE 2.5 SIGMA
Sat Edit Criterion	ITERATIVE 2.5 SIGMA
LAG Single Shot RMS	13

Status

- All log files downloaded from cddis
- Script has processed all files and generated 'summary';
- By-product is a check on log-file syntax errors;
- Next step is to automatically generate the CoM table

Summary

- Time-dependent CoM corrections for LAGEOS and ETALON are under development;
- Aim to produce machine-readable file
- Will submit to AWG for approval, towards an ILRS-recommended solution
- Must bear in mind the real uncertainties in these numbers!