

# ASIAC&CC report



M. Pirri, V. Luceri e-GEOS S.p.A., CGS - Matera



**G. Bianco** Agenzia Spaziale Italiana, CGS - Matera

Agenzia Spaziale Italiana

#### ILRS ASC Meeting, April 6th 2019, Vienna



- ACs performance check
  - Data submissions
  - 3D wrms of the residuals w.r.t. SLRF (daily and weekly)
  - Scale factor
  - Geocenter motion
  - LOD
  - Combination scale factor
  - Orbits: RMS of residuals w.r.t. combination
  - ILRS ACs orbit agreement



#### Daily (v170) ACs time series





#### Weekly (v70) ACs time series







# 3D wrms of the residuals w.r.t. SLRF2014 CORE SITES







(Daily Data) Parameters w.r.t. ITRF

Date [yy/mm/dd]









(Weekly Data) Parameters w.r.t. ITRF

Date [yy/mm/dd]

### Geocenter motion from daily solutions









(Daily Data, day = 1) EOP w.r.t. USNO



0

18/05/01

18/06/01

18/07/01

18/08/01

18/09/01

18/10/01

50 Legend asi bkg dgfi esa 40 gfz jcet 🔫 nsgf 30 scale\_f 20 10 Ó (Weekly Data) Scale factor in the combination 50 Legend asĭ bkg dgfi esa 40 gfz jcet <del>- ж</del>nsgf 30 scale\_f 20 10

18/12/01

18/11/01

19/01/01

19/02/01

19/03/01

19/04/01

(Daily Data) Scale factor in the combination

### LAGEOS1 orbits – RMS of residuals w.r.t. combination



#### LAGEOS2 orbits – RMS of residuals w.r.t. combination



#### ETALON1 orbits – RMS of residuals w.r.t. combination



#### ETALON2 orbits – RMS of residuals w.r.t. combination





| Satellite | Radial<br>[mm] | Cross-track<br>[mm] | Along-track<br>[mm] |  |  |
|-----------|----------------|---------------------|---------------------|--|--|
| LAGEOS1   | 5              | 22                  | 25                  |  |  |
| LAGEOS2   | 6              | 24                  | 28                  |  |  |
| ETALON1   | 18 17*         | 93 89*              | 93 82*              |  |  |
| ETALON2   | 24 24*         | 114 112*            | 117 106*            |  |  |

Mean RMS over the period 2018/04/01-2019/03/31

\* DGFI not included







Agenzia Spaziale Italiana



# Thank You

# CoM file comparison : LAGEOS



#### 7835 01/05/1976 21/03/1983 **276.1**











#### Station ONLY in File "Lageos"

Station ONLY in File "Lg1"

**ID Station** Start Date **End Date** Value 01/09/1991 1181 01/07/1981 253.1 7130 18/5/1998 1/3/2006 249 7829 20/3/2007 31/12/2050 250 7846 31/3/1986 1/9/1995 254 1/9/1995 31/12/2050 7846 251

| ID Station | Start Date | End Date   | Value |  |
|------------|------------|------------|-------|--|
|            |            |            |       |  |
| 1891       | 23/07/2013 | 01/01/2050 | 243.3 |  |
| 1953       | 01/01/1985 | 01/06/1993 | 270.6 |  |
| 1953       | 01/06/1993 | 01/01/1996 | 243.0 |  |
|            |            |            |       |  |
| 7343       | 01/02/2000 | 01/11/2000 | 241.6 |  |
| 7359       | 26/09/2012 | 01/01/2015 | 247.0 |  |
| 7394       | 07/08/2015 | 01/01/2050 | 246.8 |  |
| 7395       | 11/08/2017 | 01/01/2050 | 245.2 |  |
| 7407       | 09/05/2014 | 01/01/2050 | 243.1 |  |
| 7503       | 16/12/2016 | 01/01/2050 | 243.0 |  |
| 7819       | 09/12/2016 | 01/01/2050 | 245.1 |  |
| 7827       | 01/05/2014 | 11/05/2016 | 247.0 |  |
| 7827       | 11/05/2016 | 01/01/2050 | 247.0 |  |
|            |            |            |       |  |
| 7830       | 30/03/2003 | 01/11/2003 | 245.2 |  |
| 7843       | 01/01/1984 | 01/07/1986 | 246.4 |  |
| 7843       | 01/07/1986 | 01/03/1991 | 244.2 |  |
| 7843       | 01/03/1991 | 01/01/1996 | 244.5 |  |
| 7843       | 01/01/1996 | 01/01/1999 | 242.9 |  |
|            |            |            |       |  |
|            |            |            |       |  |
| 7848       | 01/09/1996 | 01/07/2008 | 245.1 |  |
| 7848       | 01/07/2008 | 01/01/2050 | 245.6 |  |

Station ONLY in File "Lg2"

| ID Station Start Date |            | End Date   | Value |
|-----------------------|------------|------------|-------|
|                       |            |            |       |
| 1891                  | 23/07/2013 | 01/01/2050 | 242.3 |
| 1953                  | 01/01/1985 | 01/06/1993 | 269.5 |
| 1953                  | 01/06/1993 | 01/01/1996 | 242.0 |
|                       |            |            |       |
| 7343                  | 01/02/2000 | 01/11/2000 | 240.4 |
| 7359                  | 26/09/2012 | 01/01/2015 | 246.4 |
| 7394                  | 07/08/2015 | 01/01/2050 | 246.2 |
| 7395                  | 11/08/2017 | 01/01/2050 | 244.4 |
| 7407                  | 09/05/2014 | 01/01/2050 | 242.1 |
| 7503                  | 16/12/2016 | 01/01/2050 | 242.0 |
| 7819                  | 09/12/2016 | 01/01/2050 | 244.4 |
| 7827                  | 01/05/2014 | 11/05/2016 | 246.6 |
| 7827                  | 11/05/2016 | 01/01/2050 | 246.5 |
|                       |            |            |       |
| 7830                  | 30/03/2003 | 01/11/2003 | 244.5 |
|                       |            |            |       |
|                       |            |            |       |
| 7843                  | 01/03/1991 | 01/01/1996 | 244.0 |
| 7843                  | 01/01/1996 | 01/01/1999 | 242.3 |
|                       |            |            |       |
|                       |            |            |       |
| 7848                  | 01/09/1996 | 01/07/2008 | 244.5 |
| 7848                  | 01/07/2008 | 01/01/2050 | 245.0 |







**ID Station** 

#### CoM file comparison : ETALON stations

Value

Station ONLY in File "Etalon"

**End Date** 

**Start Date** 

**ETALON** 

Station ONLY in File "ET1" **ID** Station **End Date Start Date** Value 01/07/1981 01/09/1991 563.9 1181 01/01/2001 01/01/2005 1863 560.2 01/01/1993 01/01/2009 1864 559.8 23/07/2013 01/01/2050 1891 563.9 01/01/1985 01/06/1993 559.7 1953 01/06/1993 01/01/1996 1953 559.2 8 5 3 3 5

| 7343 | 01/02/2000 | 01/11/2000 | 548.2 |
|------|------------|------------|-------|
| 7359 | 26/09/2012 | 01/01/2015 | 569.8 |
| 7394 | 07/08/2015 | 01/01/2050 | 569.8 |
| 7395 | 11/08/2017 | 01/01/2050 | 558.5 |
| 7407 | 09/05/2014 | 01/01/2050 | 563.4 |
| 7503 | 16/12/2016 | 01/01/2050 | 563.4 |
| 7548 | 05/10/1992 | 01/01/2003 | 563.3 |
| 7594 | 01/01/1998 | 01/01/2001 | 557.3 |
| 7819 | 09/12/2016 | 01/01/2050 | 558.5 |
| 7827 | 01/05/2014 | 11/05/2016 | 582.5 |
| 7827 | 11/05/2016 | 01/01/2050 | 582.5 |
|      |            |            |       |
| 7830 | 30/03/2003 | 01/11/2003 | 561.4 |
|      |            |            |       |
|      |            |            |       |
| 7848 | 01/09/1996 | 01/07/2008 | 561.4 |
| 7848 | 01/07/2008 | 01/01/2050 | 561.4 |
|      |            |            |       |

7130 18/05/1998 01/01/2006 603 7829 20/03/2007 31/12/2050 607 7846 31/03/1986 01/09/1995 607 7846 01/09/1995 31/12/2050 574



### OFFICIAL DH file

Not used for the SSEM PP

- 1) RB section: RB adopted by the ASC
- 2) TB section: TB adopted by the ASC
- 3) Other corrections adopted b the ASC, e.g. pressure corrections
- 4) Optional corrections, e.g. minor TB
- 5) Link to the CoM table

### Separate LEGACY DH file

- 1) Van Husson Corrections
- 2) CDDIS free format corrections
- 3) Old ASC corrections, sections are added whenever a new model is adopted by the ASC



Federal Agency for Cartography and Geodesy

# **BKG Report**

Daniel Koenig (1), Ulrich Meyer (2), Daniela Thaller (1)

- (1) BKG
- (2) AIUB

## Activities

- PP\_SSEM\_EC\_COM
  - Jose's new COM table implemented into Bernese
  - ready for processing
  - to be contributed: LAGEOS+Etalon (2000-2018)
- Geophysical loading models
  - GNSS/SLR reprocessings currently carried out at BKG
- Analysis of PP\_SSEM\_EC/BKG ongoing
- Trying to derive Etalon orbits for 1993-1999
- LARES as 5th satellite:
  - appropriate POD setup to be clarified
  - development of operational procedure

#### Contact:

Bundesamt für Kartographie und Geodäsie (BKG) Richard-Strauss-Allee 11 60598 Frankfurt, Germany

Daniel Koenig daniel.koenig@bkg.bund.de www.bkg.bund.de





#### Status report of the DGFI-TUM ILRS AC

Mathis Bloßfeld and Alexander Kehm

Technische Universität München Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)

EGU General Assembly 2019 – ILRS Analysis Standing Committee meeting Vienna, Austria, 2019-04-06

#### **Current status of the ILRS AC**



- Development of DOGS libraries OC and RI "finished", CS still ongoing
- > OC extended to process DORIS data  $\rightarrow$  initial tests were successful
- Recoding of ILRS ASC programs finished (incl. mitigation to new server/system architecture)
- ILRS AC @ DGFI-TUM now fully operational
- Daily report send via Telegram API to operator's smartphone ;-)





 Every daily SINEX file contains satellite weights (from VCE) in the COMMENT block

| weighting of the satellites |                                              |
|-----------------------------|----------------------------------------------|
| - weighting technique       | Iterative Variance Component Estimation      |
|                             | (VCE) Dased on minimum constraintd solutions |
| + LAGEOS-1:                 | 4.689859999106E-01                           |
| + LAGEOS-2:                 | 8.753647424947E-02                           |
| + Etalon-1:                 | 0.0000000000E+00                             |
| + Etalon-2:                 | 2.583778287515E-01                           |

- Refined selection of included stations according to ILRS ASC recommendations
  - min. 10 NPs per station and satellite
  - min 2 passes per station and satellite
  - these selection criteria are not really beneficial for the Etalon satellites!!!

| number of observations:                                                     |                                              |            |          |        |        |        |        |        |        |
|-----------------------------------------------------------------------------|----------------------------------------------|------------|----------|--------|--------|--------|--------|--------|--------|
| LA-1/-2 (no. NP >= 10 && no. passes >= 2), ET-1/-2 (no. NP >= 6)            |                                              |            |          |        |        |        |        |        |        |
| Stations which not fulfill the minimum observation statistics are neglected |                                              |            |          |        |        |        |        |        |        |
| (induced                                                                    | (induced by brackets in the following table) |            |          |        |        |        |        |        |        |
| occup no                                                                    | np(LA1) n                                    | ip(LA2) np | )(ET1) n | p(ET2) | p(LA1) | p(LA2) | p(ET1) | p(ET2) | SINEX? |
| 18248101                                                                    | (7)                                          | 0          | 0        | 0      | 6      | 7      | 0      | 0      | NO     |
| 18685901                                                                    | 0                                            | (6)        | 0        | 0      | 0      | (1)    | 0      | 0      | NO     |
| 18734901                                                                    | 22                                           | 24         | 0        | 6      | 9      | 12     | 0      | 2      | YES    |
| 18799401                                                                    | 13                                           | 17         | 0        | (2)    | 3      | 3      | 0      | 1      | YES    |
| 18844401                                                                    | 46                                           | 60         | 0        | 0      | 7      | 6      | 0      | 0      | YES    |
| 18869601                                                                    | 20                                           | 34         | 0        | 0      | 3      | 3      | 0      | 0      | YES    |
| 18879701                                                                    | 26                                           | 24         | 0        | 0      | 5      | 4      | 0      | 0      | YES    |
| 18889801                                                                    | (5)                                          | 15         | 0        | 0      | 3      | 5      | 0      | 0      | YES    |
| 18900901                                                                    | 26                                           | 42         | 0        | 0      | 6      | 7      | 0      | 0      | YES    |
| 18915301                                                                    | 11                                           | 0          | 0        | 0      | 2      | 0      | 0      | 0      | YES    |
| 18931801                                                                    | 37                                           | 43         | 0        | 0      | 5      | 10     | 0      | 0      | YES    |
| 70900513                                                                    | 126                                          | 160        | 0        | 38     | 17     | 16     | 0      | 2      | YES    |
| 71050725                                                                    | 125                                          | 156        | 0        | (2)    | 10     | 12     | 0      | 1      | YES    |
| 71100412                                                                    | (9)                                          | 0          | 0        | 0      | (1)    | 0      | 0      | 0      | NO     |
| 71191402                                                                    | 26                                           | 22         | 0        | 0      | 2      | 3      | 0      | 0      | YES    |
| 72371901                                                                    | 90                                           | 59         | 0        | 7      | 11     | 7      | 0      | 2      | YES    |
| 72496102                                                                    | 40                                           | 37         | 0        | 6      | 8      | 7      | 0      | 2      | YES    |
| 73942601                                                                    | 15                                           | 0          | 0        | 0      | 2      | 0      | 0      | 0      | YES    |
| 74072701                                                                    | (4)                                          | (1)        | 0        | (3)    | 2      | (1)    | 0      | 1      | NO     |
| 78106801                                                                    | 270                                          | 234        | 0        | 67     | 23     | 18     | 0      | 8      | YES    |
| 78113802                                                                    | 17                                           | (4)        | 0        | 0      | 2      | (1)    | 0      | 0      | YES    |
| 78198201                                                                    | 39                                           | 55         | 0        | (3)    | 10     | 13     | 0      | 2      | YES    |
| 78212801                                                                    | (9)                                          | (7)        | 0        | 0      | (1)    | 2      | 0      | 0      | NO     |
| 78259001                                                                    | 0                                            | 23         | 0        | 0      | 12     | 9      | 0      | 0      | YES    |
| 78272201                                                                    | 90                                           | 75         | 0        | 17     | 16     | 19     | 0      | 5      | YES    |
| 78393402                                                                    | 34                                           | (2)        | 0        | (5)    | 5      | (1)    | 0      | 2      | YES    |
| 78403501                                                                    | 203                                          | 168        | 0        | 17     | 16     | 13     | 0      | 4      | YES    |
| 78418701                                                                    | 54                                           | 62         | 0        | 12     | 7      | 8      | 0      | 2      | YES    |
| 78457801                                                                    | 39                                           | 21         | 0        | 15     | 4      | 2      | 0      | 2      | YES    |
| 79417701                                                                    | 135                                          | 154        | 0        | 22     | 17     | 15     | 0      | 4      | YES    |
| 88341001                                                                    | 212                                          | 125        | 0        | 49     | 24     | 17     | 0      | 8      | YES    |
| FILE/COMMENT                                                                |                                              |            |          |        |        |        |        |        |        |



Plots based on ILRSB combination summaries – number of used observations



Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München



Plots based on ILRSB combination summaries – number of used stations



Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München



Plots based on ILRSB combination summaries – variance factors



Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

#### ТШП

#### **DGFI-TUM v70 solution**

- weekly combination every Tuesday (same settings as daily v170 solution used)
- v70-sp3c: orbit solutions for LA-1/-2, ET-1/-2 (TRF, EOP fixed)



Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München


#### **DGFI-TUM v230 solution**

- reprocessed time series between 1993 and 2019
- most recent CoM data (J. Rodriguez) used
- > test files submitted to JCET  $\rightarrow$  multi-color stations were not treated properly  $\rightarrow$  fixed!!
- Submission still needed? If yes, we can do this **immediately**...
- Issue from ASC meeting @ Mt. Stromlo
  - Wettzell pressure bias → observations already corrected? → ACs must be informed!!

#### Order of reprocessing important!!

(1) new CoMs applied  $\rightarrow$  (2) Wettzell obs. replaced  $\rightarrow$  (3) new long-term range biases

#### **GGOS WG HF EOP**



- DGFI-TUM is a member of this "ad-hoc" working group (chair: J. Gipson)
- Reprocessing of 5 years of data done and submitted to John Gipson two weeks ago...
- After evaluation of the model test scenarios for different techniques, the working group will provide a recommendation on which model to be used for ITRF2020 reprocessing!!
- Models tested:
  - John Gipson's VLBI tidal model (with and without libration)
  - Tidal correction model by Artz et al (2011 and 2012)
  - Tidal correction model by Desai and Sibois
  - Tidal correction model based on PREM, EOT11a or FES2012 (Hagedoorn, GFZ)
  - IERS2010 tidal correction model
  - Tidal correction model by Mazdak et al.



#### **Other topics**

#### ≻ T2L2

- Nearly no impact on UT1/LOD at all
- Only minor impact of T2L2 biases on SLR-only pole coordinates of LA-1/-2, ET-1/-2, larger impact on LARES pole coordinates
- IERS linear pole
  - impact on coordinates depends on geograph. location
  - Max. effect: up to 2 mm in 10 yr in height (e.g. Wettzell)
  - Minor effects in hz-components
  - III Since the ILRS ACs should use the IERS linear pole for ITRF2020, a consistent gravity field model has to be used (see Jean-Michels presentation)!!!





#### **Final remarks**



- ➢ ILRS AC @ DGFI-TUM fully operational now → v170, v70, v70-sp3c, v230 available
- When to switch to new CoM, data handling file and long-term mean range biases in operational mode?
- ➢ ILRS data handling file could be archived at EDC → Christian/Mathis could be responsible
- **GGOS WG HF-EOP**: DGFI-TUM contributed

- > FYI:
  - DTRF2020 will again be corrected for NT-L corrections



#### Status report of the DGFI-TUM ILRS AC

Mathis Bloßfeld and Alexander Kehm

Technische Universität München Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)

EGU General Assembly 2019 – ILRS Analysis Standing Committee meeting Vienna, Austria, 2019-04-06

## GFZ AC Report

Rolf König, Margarita Vei



HELMHOLTZ

## Content

- ETALON processing
- Station Systematic Error Monitoring (SSEM)
- C(2,0) time series from 6 geodetic satellites for GFZ GRACE RL06
- Reanalysis status



## **ETALON Processing**

- Found operational procedure:
  - 1st step: ETALON only processing
  - 2nd step: combination with LAGEOS on the observation level
- Six recent months of combined pos&eop delivered to CCs as standard v71
- ETALON 1993 1999 pending
  - Partly longer than 7-day arcs needed
- ETALON 1999 2015 processed
  - Partly low quality, standards to be homogenized
- ETALON 2015 onwards is available



## **ETALON Validation**



Improvements so-so





HELMHOLTZ

### **ETALON** Validation

L12 vs LEcomb dLOD wrt Apriori





HELMHOLTZ

## **ETALON** Resume

- Two weeks (190119 and 190126) checked by ILRSA CC
  - Results similar to the above
- ILRSB CC has not responded so far
- ETALONs seem to have some value despite of sparse tracking and difficult handling in operations
- Once CCs agree, operational pos&eop products will go as the combined ones



## Station Systematic Error Monitoring

- Implementation of the T2L2 time biases done
- Implementation of the new CoM procedure done
- ETALON processing back to 1993 not finished yet
- LAGEOS only processing has started



## C(2,0) Time Series for GRACE

- Replacement C(2,0) for GFZ's GRACE RL06 monthly gravity fields
- Consistent with GFZ GRACE/GRACE-FO RL06 background models
- Based on 6 geodetic satellites:
  - LAGEOS, LAGEOS-2, AJISAI, STARLETTE, STELLA, LARES
- Combination of normal equations via variance component estimation
- Low degrees estimated up to degree/order 5 plus C(6,1) and S(6,1)
- Available from the GravIS portal: gravis.gfz-potsdam.de
  - See poster EGU2019-10455: Dahle, C. et al.: Access to GRACE/GRACE-FO Mass Anomaly Time Series: The GFZ Web Portal GravIS
  - See poster EGU2019-8384: Dill, R. et al.: Seasonal variations in global mean sea level and consequences for the excitation of length-of-day changes



## C(2,0) Time Series for GRACE

• Comparison with GRACE TN-11





HELMHOLTZ

## **Reanalysis Status**

- Ready to adopt CRD format v2.0
- Ready to adopt the secular mean pole





## **Roadmap for ITRF2020**

#### **ITRS Center**

#### **IPGP-IGN**, France





Altamimi et al., ITRF2020 Roadmap

# **ITRF2020:** Call for Participation (CfP)

- Draft circulated among IERS DB Thursday, Dec 06, 2018
  - List of suitable model updates in the annex of the CfP
- Comments were welcome until January 10, 2019

   No comments received
- The CfP is now final & posted at the ITRF Website :

http://itrf.ign.fr/doc\_ITRF/CFP-ITRF2020.pdf



### ITRF2020 Inputs by TCs: specific model updates are strongly requested

- All techniques waiting for the consensus HF-EOP model
- IVS: modeling the gravitational deformation for as many antennas as possible, possibly refine the thermal expansion modeling
- ILRS: SLR range biases to be estimated/applied
- IGS: up to date GNSS force models to be used
- IDS: Improve analysis strategy, DORIS-specific model updates : SRP & SAA



## **Summary**

- General agreement of all techniques regarding proposed effects and model updates to be considered for the reprocessing
- CfP disseminated, available at the ITRF Website:
  - http://itrf.ign.fr/doc\_ITRF/CFP-ITRF2020.pdf
- In preparation for ITRF2020, the ITRS Center may
  - Request specific solutions for testing purposes, e.g.
    - SLR range biases estimated
    - New HF-EOP model applied
    - Others TBD
- Follow up by all ACCs of the effects and model updates, with regular report to ITRS and IERS DB



## Schedule & time-line

| Date                      | Action                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------|
| <b>January 10, 2019</b>   | <b>Dissemination of the Call for Participation</b>                                         |
| February 10, 2021         | Deadline for solution submissions by Technique<br>Centers. Earlier submissions are welcome |
| April 2021                | First and early results to be shared and discussed with the TCs.                           |
| Until end of May,<br>2021 | Inter comparisons of the ITRF CCs solutions                                                |
| ~June, 2021               | <b>Preliminary ITRF2020 solution available for evaluation by TCs</b>                       |
| Sep-Oct, 2021             | Final ITRF2020 solution released by the ITRS Center                                        |



## **Backups**



Altamimi et al., ITRF2020 Roadmap





### The JCET AC/CC Report to the ILRS ASC

E. C. Pavlis, M. Kuzmicz-Cieslak and K. Evans

EGU2019 Vienna, Austria, April 6, 2019







- Operational Products Status Report
- Station Systematic Error Monitoring Project
- Wettzell (8834) Pressure Bias Error
- DGFI Test Series Examination
- Etalon 1 & 2 Tracking Campaign Plans
- Modeling Updates in view of the ITRF2020 reanalysis
- Planning for the use of SLR @ GNSS data in a future product





- Daily and Weekly series delivered routinely and consistently by six of the eight ACs
- With the routinely contributing ACs down to six-seven, it is important that all ACs make an effort to deliver their contributions regularly, to maintain the quality of our products!
- ACs that do not participate in test PPs and demonstrate their ability to deliver quality products, delay us from wrapping up PPs and moving to the next phase or PP. We need to establish a process to move such cases to the AAC group and move on, until they can recover and come back (GRGS).

























Erricos C. Pavlis 04/06/2019



### **Weekly Product Submissions**





Erricos C. Pavlis 04/06/2019





#### **Quarantine Stations**

| Station | Code | Site                        | DC   | SOD      | DOMES     | First Data | Last Data  |             |
|---------|------|-----------------------------|------|----------|-----------|------------|------------|-------------|
| 1874    | MDVS | Mendeleevo 2, Russia        | EDC  | 18748301 | 12309S003 | 2012-12-17 | 2019-04-03 | 1 day(s)    |
| 7080    | MDOL | McDonald Observatory, Texas | NASA | 70802419 | 40442M006 | 1993-06-11 | 2019-02-12 | 50 day(s)   |
| 7358    | GMSL | Tanegashima, Japan          | NASA | 73588901 | 21749S001 | 2004-09-01 | 2019-04-01 | 3 day(s)    |
| 7395    | GEOL | Geochang, Republic of Korea | EDC  | 73956501 | 23910S001 | 0000-00-00 | 0000-00-00 | None day(s) |
| 7816    | UROL | Stuttgart, Germany          | EDC  | 78165201 | 10916S001 | 0000-00-00 | 0000-00-00 | None day(s) |
| 7824    | SFEL | San Fernando, Spain         | EDC  | 78244502 | 13402S007 | 1999-04-08 | 2017-07-01 | 642 day(s)  |

□ Tow sites (in RED) are actively undergoing validation of their data;

□ Two "engineering" sites (above in PURPLE) that have yet to submit any data (no need for official validation, but may request it if they want to see the quality of their data assessed);

□ McDonald is sending data very sporadically

San Fernando is reaching "end of operations" phase, so no need to proceed with validation.





## **Etalon Campaign Project**

Status Week #6



# **ILRS Network Sites Supporting Etalon Campaign**



| Site Name             | Station ID# |
|-----------------------|-------------|
| Zimmerwald            | 7810        |
| Wettzell (WETL)       | 8834        |
| Yarragadee            | 7090        |
| Herstmonceux          | 7840        |
| Matera                | 7941        |
| Graz                  | 7839        |
| Wettzell (SOSW)       | 7827        |
| Grasse                | 7845        |
| Potsdam               | 7841        |
| Mount Stromlo         | 7825        |
| Changchun             | 7237        |
| Shanghai              | 7821        |
| Beijing               | 7249        |
| Hartebeesthoek (HARL) | 7501        |
| Kunming               | 7819        |
| Monument Peak         | 7110        |
| Tahiti                | 7124        |
| Greenbelt             | 7105        |

| Brasilia   | 7407 |
|------------|------|
| Irkutsk    | 1891 |
| Altay      | 1879 |
| Komsomolsk | 1868 |
| Badary     | 1890 |
| Arkhyz     | 1886 |
| Baikonur   | 1887 |

|   | Normal Points |      | Total  |       |
|---|---------------|------|--------|-------|
|   | Site Name     | Sta. | Etalon | Netw. |
|   | Yarragadee    | 7090 | 414    | N     |
|   | Wettzell (WI  | 8834 | 346    | E     |
|   | Matera        | 7941 | 295    | E     |
|   | Zimmerwald    | 7810 | 237    | E     |
|   | Herstmonce    | 7840 | 188    | E     |
|   | Grasse        | 7845 | 181    | E     |
| • | Wettzell (SO  | 7827 | 176    | E     |
|   | Graz          | 7839 | 167    | E     |
|   | Changchun     | 7237 | 122    | С     |
|   | Kunming       | 7819 | 104    | С     |
|   | Komsomolsk    | 1868 | 95     | R     |
|   | Altay         | 1879 | 93     | R     |
|   | Potsdam       | 7841 | 59     | E     |
| - | Greenbelt     | 7105 | 46     | N     |
|   | Hartebeesthe  | 7501 | 39     | N     |
|   | Simeiz        | 1873 | 32     | E     |
|   | Beijing       | 7249 | 31     | С     |
|   | Hartebeesthe  | 7503 | 25     | R     |
|   | Mount Strom   | 7825 | 19     | 0     |
|   | Monument P    | 7110 | 17     | N     |
|   | Shanghai      | 7821 | 14     | С     |
|   | Arkhyz        | 1886 | 5      | R     |
|   | Irkutsk       | 1891 | 5      | R     |
|   | Arequipa      | 7403 | 0      | N     |
|   | Badary        | 1890 | 0      | R     |
|   | Baikonur      | 1887 | 0      | R     |
|   | Borowiec      | 7811 | 0      | E     |
|   | Brasilia      | 7407 | 0      | R     |
|   | Haleakala     | 7119 | 0      | N     |
|   | Katzively     | 1893 | 0      | E     |
|   | Kiev          | 1824 | 0      | E     |
|   | McDonald      | 7080 | 0      | N     |
|   | Mendeleevo    | 1874 | 0      | R     |
|   | Riga          | 1884 | 0      | E     |
|   | Sejong        | 7394 | 0      | Ο     |
|   | Simosato      | 7838 | 0      | Ο     |
|   | Svetloe       | 1888 | 0      | R     |
|   | Tahiti        | 7124 | 0      | N     |
|   | Zelenchukska  | 1889 | 0      | R     |
| _ | Totals:       |      | 2 710  |       |

Erricos C. Pavlis 04/06/2019



## Network of Selected Stations (all)





Erricos C. Pavlis 04/06/2019



## Etalon 1 & 2 Tracking Campaign - NPs











Annual Yield Equivalent [NPs]

Etalons\_NPs\_3mo+W1-6\_desc#6

E. C. Pavlis 04/07/2019





#### • Geodetic Satellite Targets Site:

- http://geodesy.jcet.umbc.edu/ALLSTAT10\_30/configuration\_ALL.php

# GEODETIC SATELLITE VISIBILITIES Minimum Elevation: L1/L2/LARES: 10° E1/E2: 30°

| PER ST  | ATION DAILY  | PER STATION WEEKLY   | PER STATION MONTHLY   |
|---------|--------------|----------------------|-----------------------|
| PER SAT | ELLITE DAILY | PER SATELLITE WEEKLY | PER SATELLITE MONTHLY |
|         |              |                      |                       |
| Day     | 20           | 19-04-06 ᅌ           |                       |
| Station | 70           | 90 Yarragadee        | 0                     |
|         | Su           | ubmit                |                       |




Graz 7839

Minimum Elevation: L1/L2/LARES: 10° E1/E2: 30°







#### Minimum Elevation: L1/L2/LARES: 10° E1/E2: 30°







# Wettzell (8834) Pressure Bias Error – Status?

Communicated by Rolf König and Ulli Schreiber

# **I** Pressure Change wrt a Standard & ASC Observed Bias





The barometer in Wettzell is located in the basement of the legacy VLBI system, where it always has been. In order to reference the SLR measurement to the invariant point of the SLR system, we applied a **1 hPa** offset correction in the ranging program in order to account for the height difference. In 2012 we progressed to a newer system. In the process this offset correction was lost!

Erricos C. Pavlis 04/06/2019





- A plan to correct and replace the data is being developed, when the station is ready they will contact the DCs to organize the replacement and will notify the ASC and all analysts of the new release and the period covered.
- It is a complicated process due to the fact that once they apply the correction, data from before and after the correction need special attention if they happen to fall in the same arc analyzed.
- We made some proposals to the station which I assume they are considering/evaluating, with no news over the past month.

### At Canberra Ulli stated that his group was working with the DCs on correcting this issue, but no news beyond that, is it completed? When?





# DGFI Test SINEXs for the v230 Series – Problem/Status?





- DGFI submitted about 20 WEEKLY SINEXs produced with the new DGFI s/w and asked us to check if they now comply with the new bias-labeling convention we have adopted for multi-color systems;
- At JCET we produced combination products replacing the previous DGFI SINEXs with the new ones;
- We noticed that not all SINEXs were successfully combined, some giving errors and stopping without a combined product being generated.
- After a closer examination of the weeks that did not work as expected we noticed that in the new DGFI approach for these SINEXs they have separated the dual systems throughout the process to TWO DIFFERENT/INDEPENDENT stations!
- That of course is wrong and inconsistent with what we all do. Doing so weakens tremendously the results and it misrepresents physical reality.

# **DGFI** Test v230 Series Examination – cont.



%=SNX 2.02 DGF 19:010:30379 DGF 03:131:00584 03:137:85726 L 00151 1 S E

- There is a single system measuring using two different wavelengths, so there is a single set of coordinates involved, although the biases may be different for each path/wavelength.
- Physically one apparatus is measuring and both wavelengths use the same IRP, so the measured ranges refer to the same location which has a unique connection to the accessible points of the site (surveyed points).

| *      |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      | -        |
|--------|------|--------|--------|------------|-----|--------|-----|----------------|------|------|----------|-------|-----|-------|----------------|-----|----|-----|----------|-----|-----|------|--------------------|------|----------|
| +SITE/ | ′ID  |        |        |            | _   |        |     |                |      |      |          |       |     | _     |                |     |    |     | _        |     |     |      |                    |      |          |
| *Code  | PT   | Domes  | 5      |            | ΤS  | tatio  | on_ | desc           | rip  | tior | ۱        | Ap    | pr  | ox_1  | .on_           | Ap  | pr | ox_ | la       | t_  | Ар  | p_h  |                    |      |          |
| 7405   | A    | 41/19  | 9M0    | 01         |     | oncep  | ocı |                |      |      |          | 28    | 37  | 13    | 31.2           | -3  | 6  | 50  | 34       | .8  |     | 169  | .8                 |      |          |
| (705   | Α    | 41719  | 9M0    | 11         | LC  | once   | οςι |                |      |      |          | 28    | 57  | 13    | 31.2           | -3  | 6  | 50  | 34       | .8  |     | 169  | .8                 |      |          |
| *      |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| +STTE  | /FCC | FNTR   | гст    | <br>тү     |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      | -        |
| *Code  | PT   | SOLN   | Т      | Dat        | a s | tart   |     | Data           | - Fn | d    |          | tvp   | An  | )r    | ·> Be          | enc | hm | ark | : ()     | m)  |     |      |                    |      |          |
| 7405   | Δ    | 01     | i.     | 07:        | 001 | :0000  | 00  | 04:0           | 00:  | 0000 | 00       | XY7   | γ.Ρ | 0.30  | 90             | -1  | .0 | 100 |          | -1. | 03  | 30   | -                  |      |          |
| 7705   | A    | 01     | Ē      | 02:        | 001 | :0000  | 00  | 04:0           | 00:  | 0000 | 00       | XYZ   |     | 0.30  | 90             | -1  | .0 | 100 | ,<br>) . | -1. | 03  | 30   |                    |      |          |
|        |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| *      |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      | -        |
| +SOLU1 | ION  | I/EPOO | CHS    |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| *Code  | PΤ   | SOLN   | Т      | Dat        | a_s | tart_  |     | Data           | _en  | d    |          | Mear  | ı_∈ | epoch | <u></u>        |     |    |     |          |     |     |      |                    |      |          |
| 7405   | Α    | 01     | L      | 03:        | 131 | :3539  | 94  | 03:1           | 37:  | 3299 | 98       | 03:1  | .34 | 1:341 | .96            |     |    |     |          |     |     |      |                    |      |          |
| 7705   | Α    | 01     | L      | 03:        | 136 | :6973  | 36  | 03:1           | 36:  | 7171 | L7       | 03:1  | .36 | 5:707 | 26             |     |    |     |          |     |     |      |                    |      |          |
|        |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| *      |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      | -        |
| +BIA2/ | 'EPC | CHS    |        | D - 1      |     | 1      |     | <b>D</b> - I - |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
|        |      | SULN   | B      | Dat        | a_s | tart_  |     | Data           | _en  | a    |          | Mear  | 1_e | epocr | 1              |     |    |     |          |     |     |      |                    |      |          |
| 7405   |      | 401    | R<br>D | 02:        | 121 |        | 00  | 02:1<br>02:1   | 20.  | 0000 | 00<br>AA | 02.1  | 2/  | 1.452 | 00             |     |    |     |          |     |     |      |                    |      |          |
| 7705   | 12   | 801    | D      | 03.<br>03. | 121 | . 0000 |     | 03.1<br>03.1   | 28.  | 0000 | NO<br>NO | 03.1  | 34  | 1.432 | 200            |     |    |     |          |     |     |      |                    |      |          |
| 1105   | 22   | 001    | IX.    | 05.        | 191 |        |     | 05.1           |      | 0000 |          | 05.1  |     | r.+J2 | .00            |     |    |     |          |     |     |      |                    |      |          |
| *      |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      | -        |
| +SOLUT | ION  | I/ESTI | ЕМА    | TE         |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| *Inde> | ( _1 | ype_   | I CO   | DE I       | PTI | SOLN   | I_R | ef_e           | poc  | h    | lUr      | nitlS | 51_ | Esti  | mate           | e   |    |     |          |     | IS  | igm  | a                  |      | _        |
| 44     | I RE | SIAS   | 74     | 05         | L2  |        | 03  | :134           | :43  | 200  | m        | 1     |     | 3.28  | 37470          | 037 | 39 | 462 | 24E      | -03 | 3 1 | 09   | 004                | E-07 | 2        |
| 45     | 5 RE | SIAS   | 77     | 05         | L2  |        | 03  | :134           | :43  | 200  | m        | 1     |     | 9.91  | .0229          | 997 | 15 | 726 | 51E      | -03 | 3 4 | .18  | <mark>056</mark> 1 | E-07 | 2        |
|        |      |        |        |            |     |        |     |                |      |      |          |       |     |       |                |     |    |     |          |     |     |      |                    |      |          |
| 116    | 5 ST | AX     | 74     | 05         | Α   | 01     | 03  | :134           | :43  | 200  | m        | 1     | _   | 1.49  | 2037           | 258 | 27 | 256 | 51E-     | +06 | 5 5 | .55  | 943                | E-0: | L        |
| 117    | 7 ST | AY     | 74     | 05         | Α   | 01     | 03  | :134           | :43  | 200  | m        | 1     |     | 4.88  | 3794           | 513 | 14 | 670 | 9E-      | +06 | 5 2 | . 09 | 145                | E-0: | L        |
| 118    | S 51 | AZ     | 74     | 05         | Α   | 01     | 03  | :134           | :43  | 200  | m        | 1     |     | -3.80 | 356            | b01 | 41 | 309 | )7E-     | +06 | ) 1 | 48   | 996                | E-0: | L        |
| 119    | 9 ST | AX     | 77     | 05         | A   | 01     | 03  | :134           | :43  | 200  | m        | 1     | _   | 1.49  | 2037           | 260 | 66 | 729 | 8E       | +06 |     | 32   | 855                | E+0( | 2        |
| 120    | וכי  | AY     | 11     | 05<br>05   | A   | 01     | 03  | :134           | :43  | 200  | m        | 1     | L - | -4.88 | 5794(<br>2550) | 015 | 00 | 168 |          | +06 | 2   | .17  | 429                | E+0( | <u>)</u> |
| 121    | L 51 | AZ     | ()     | 05         | Α   | 10     | 63  | :134           | :43  | 200  | m        | 1     | -   | -3.86 | 1326           | 599 | 60 | 824 | -0F      | +06 | ) 1 | 02   | 172                | E+0  | 9        |





# **Station Systematic Error Monitoring-SSEM Project**





- We reanalyzed all of the 1993-present arcs with new models:
  - New gravity, TVG and ocean tides
  - GGM05C along with new degree-2 series from SLR (UT/CSR series)
  - GOT10.4 ocean tides and Ocean Loading terms
  - New secular pole (gravity series is compatible with new "pole")
- We need to work on some of the arcs, this is round one
- We see significant improvement at this stage
- We will release to all the usual data sets of the new degree-2 series from SLR (UT/CSR series) for use in the reanalysis (ASAP)



#### **Station Systematic Error Monitoring-SSEM Project -1**















## **Site Selection for the SSEM Project**



1824 Golosiiv <mark>1831 Lviv</mark> 1863 Maidanak 2 1864 Maidanak 1 2003.0-> 1868 Komsomolsk-na-Amure 2008.0 -> 1873 Simeiz 2001.0 -> 1879 Altav 1884 Riga 1885 Riga 1886 Arkhyz 1887 Baikonur 1888 Svetloe 1889 Zelenchukskya 1890 Badary 1891 Irkutsk 1893 Katzively 1953 Santiago 7080 McDonald Obs. 7090 Yarragadee 7097 Easter I 7105 Greenbelt 7110 Monument Peak 7119 Haleakala 7122 Mazatlan

7124 Easter I 7124 Tahiti 7125 Greenbelt 7130 Greenbelt 7210 Haleakala 7231 Wuhan 7236 Wuhan 7237 Changchun 7249 Beijing 7295 Richmond 7308 Koganei 7328 Koganei 7335 Kashima 99/04-00/05 7337 Miura 7339 Tateyama <del>7355 Urumai</del> 7356 Lhasa 7357 Beijing A 7358 Tanegashima 7359 Daedeok 7394 Seiong 7403 Arequipa 7404 Santiago 7405 Conc@423 7405 Conc@847

7406 San Juan  $\rightarrow$  2013.0 7407 Brasilia 7410 Algonqui 7411 La Grand 7501 Hartebeesthoek 7502 Sutherla 7525 Xrisokel <mark>7530 Bar Givv</mark> <mark>7545 Punta Sa</mark> 7548 Cagliari 7597 Wettzell 7806 Metsahovi 99/09-> 7810 Zimm@423 7810 Zimm@532 7810 Zimm@846 7811 Borowiec 7819 Kunming 7820 Kunming 7821 Shanghai 7822 Tahiti 7823 San Fernando 7824 San Fernando 7825 Mt Stromlo 7830 Chania 7831 Helwan

7832 Riyadh 7835 Grasse 7836 Potsdam 7837 Shanghai 7838 Simosato 7839 Graz 7840 Herstmonceux 7841 Potsdam 7843 Orroral 7845 Grasse 7848 Ajaccio 7849 Mt Stromlo 7850 Mcdonald 7882 Cabo San 7883 Ensenada 7884 Albuguer 7918 Greenbelt 7939 Matera 7941 Matera 8833 Kootwijk 8834 Wettzell









# **JCET Portal UPDATE - 1**





http://geodesy.jcet.umbc.edu/ILRS\_AWG\_MONITORING/



# **Station Systematic Error Monitoring Project**



| Station Syste<br>Rean                                                                                     | matic Err<br>alysis Proj                                                                       | ors Estimato                        | ed from SLR DATA<br>since 1993                                                                           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
| LAGEOS ESTIMATE<br>ASI v220<br>BKG v220<br>DGFI v220<br>ESA v220<br>GFZ v220<br>GFZ_L12 v220<br>JCET v220 | LAGEOS-2 ES<br>ASI v220<br>BKG v220<br>DGFI v22<br>ESA v220<br>GFZ v220<br>GFZ_L12<br>JCET v22 | STIMATE<br>0<br>0<br>0<br>v220<br>0 | COMBINED ESTIMATE<br>ETALON1&2<br>ASI v220<br>BKG v220<br>DGFI v220<br>ESA v220<br>GFZ v220<br>JCET v220 |  |  |  |  |
| NSGF v220 ILRSA v220 ILRSB v220 Start (MM-DD-YYYY):                                                       | NSGF v22<br>ILRSA v2<br>ILRSB v2                                                               | 20<br>20<br>20                      | ILRSA v220<br>ILRSB v220                                                                                 |  |  |  |  |
| End Date (MM-DD-YYYY)<br>Station<br>Plot Size                                                             | Station<br>Minimum                                                                             | *)<br>Maximum                       |                                                                                                          |  |  |  |  |
| Y axis<br>LOESS regression<br>SHOW STATION EVENTS<br>LARGER THAN (SELECT BETWEEN 1-<br>4)                 | 15<br>0 🗘<br>Submit                                                                            | %                                   |                                                                                                          |  |  |  |  |







Erricos C. Pavlis 04/06/2019







Erricos C. Pavlis 04/06/2019







Erricos C. Pavlis 04/06/2019

34







Erricos C. Pavlis 04/06/2019







Erricos C. Pavlis 04/06/2019



### Long-term Systematic Errors LAGEOS





Erricos C. Pavlis 04/06/2019



### Long-term Systematic Errors LAGEOS-2







### Long-term Systematic Errors LAGEOS1/2









- We need to evaluate the results from each AC and subsequently review the combined result for each LAGEOS;
- The combined time series will be reviewed for each system at each site and the goal here is to identify the "breaks" due to logged activities at the site (from their HST logs);
- At a next step we will need to discuss<sup>\*</sup> with the stations any additional "events" identified in their time series, to rationalize the adoption of additional corrections;
- The adopted long-term mean biases will be applied a priori;
- We will need to do a "dry run" for 1-2 months, then move to an operational phase by March 1, 2019 or wait after the EGU???

\* We already have had discussions up to ~2014, so we have most of the answers by now

#### Where A Geodetic Software Kartverket Ingrid Fausk, Michael Dähnn, Ann-Silje Kirkvik

April 6, 2019

#### Where Timeline

#### 2015: Start

- > 2018: First release as an open source project on GitHub
- ▶ 2019: Two proposed IVS analysis centers with Where:
  - Kartverket, Norway
  - Instituto Geográfico Nacional, Spain
- 2020: IVS Analysis centers with Where?
- ▶ 2022: ILRS Analysis center with Where?



#### Live Demo of Where

- Running Where
- Running There, a companion tool for visualizing results
- Status, discussion
- ► Bugs...





#### The Technical Stuff

The Where software is mainly being written in Python

- Cross-platform: Runs on Linux, Mac, Windows
- Solid, flexible and fast libraries like numpy, astropy, matplotlib and scipy are available
- We use a HDF5-based format for internal data storage
- Python has effective interfaces to C and Fortran code, and we use the SOFA and IERS software libraries directly
- Orbit integrator using Cowell method written in Python.





British Geological Survey

# Gateway to the Earth

#### ILRS Analysis Committee meeting NSGF report

José Rodríguez, Graham Appleby BGS Space Geodesy Facility, UK

5<sup>th</sup> April 2019, Vienna

© NERC All rights reserved

#### NSGF activities/updates

- CoM corrections delivered to ACs and other selected members of the community closely involved with SLR analysis
- Details and implications of new CoM in Canberra presentations (ASC and main meeting)
- CoM paper already submitted  $\rightarrow$  public release of tables as soon as it's approved
- Briefly: changes are big enough for us to care (CoM big contributor to overall error budget and previously identified biases, especially for bigger targets!)
- Lower CoM values  $\rightarrow$  higher station heights  $\rightarrow$  increase in network scale
- Of course, CoM changes and RB effects are *not* cumulative



#### NSGF activities/updates

- TB from T2L2 not implemented
- Except for that, ready for reanalysis (once DH file sorted out)
- Will implement shortly more modern atmospheric modelling than what is available in SATAN at the moment (thanks, F.Lemoine!), hoping to improve LARES fits
- Spherical harmonics have been ready for a while, but output is in non-standard format



#### NSGF activities/updates

- Contribution to IERS TN on TRF comparison
- No surprises here:
  - Similar performance on the basis of LG1/LG2 residuals
  - But: different network scale. s(DTRF14) = s(ILRS-A); s(ITRF14) = s(ILRS-A) + 0.7 ppb
  - On the basis of solutions with RB estimation ITRF14 appears more accurate
  - No need for RB to see this, analysis of residuals offers a lot of information



### Post-fit residual trends

No range error, perfect measurement. Station height accurately estimated





### Post-fit residual trends

Positive range error (assumed constant over an orbital arc). Positive residual if station coordinates not estimated (nor biases)





### Post-fit residual trends

Positive range error. Station height inaccurately estimated (lower than "true" value). Bias absorbed in coordinates (biases not estimated)




Positive range error. Station height inaccurately estimated (lower than "true" value). Bias absorbed in coordinates.

BUT: height offset > bias value (because of observation geometry)

High elevation: negative residuals; low elevation: positive residuals

















20 40 60 80 zenith distance (°) 20 40 60 80 zenith distance (°)



7839 residuals by ZD

m = 0.15

m = 0.09

80

60





### NSGF activities/updates

- Simply looking at residuals (no RB estimation) can reveal problems in station heights
- But: inaccurate coordinates not the only relevant effect (intensity dependent effects)
- This is possible because we don't have many parameters in SLR that could absorb these effects, so everything responds to geometry in a simple, predictable way
- What will happen with SLR support for other missions?



### NSGF activities/updates

- Simply looking at residuals (no RB estimation) can reveal problems in station heights
- But: inaccurate coordinates not the only relevant effect (intensity dependent effects)
- This is possible because we don't have many parameters in SLR that could absorb these effects, so everything responds to geometry in a simple, predictable way
- What will happen with SLR support for other missions?





#### NSGF activities/updates

- Simply looking at residuals (no RB estimation) can reveal problems in station heights
- But: inaccurate coordinates not the only relevant effect (intensity dependent effects)
- This is possible because we don't have many parameters in SLR that could absorb these effects, so everything responds to geometry in a simple, predictable way

•••

- What will happen with SLR support for other missions?
- Transferability of RB will depend on bias structure. But overall we'll be in a better situation



CoM innacuracies intensity dependent effects timer non linearities ground calibration other equipment issues





