

2023/2 ILRS Analysis Standing Committee meeting

Mathis Bloßfeld⁽¹⁾ and Cinzia Luceri⁽²⁾

(Conveners)

(1) DGFI-TUM

(2) ASI/e-geos

Thursday, October 26th, 2023, Zoom, 1 to 4 PM (UTC)

ILRS ASC meeting – 2023-10-26

То	day's agenda (order changed; 1 point more…)	ILRS	agenzia spaziale italiana
0)	Last meeting + open Action Items (AIs)	(MB, CL)	10 minutes
1)	Short reports of ACs/CCs; status of the new operational products (v180,v80,v280)	(all)	40 minutes
2)	LARES-2	(JR)	10 minutes
3)	Stanford counter issue	(AS, GA)	10 minutes
	break (optional)		20 minutes
3)	ITRF2020 update	(CL, MB)	50 minutes
4)	LARES-PP (gravity field estimates)	(MB)	10 minutes
5)	ILRS ASC analysis document website	(MB)	10 minutes
6)	New ACs (CNES and GRGS)	(EP, CL, MB)) 10 minutes
7)	Update of DSC files	(all)	10 minutes

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Open Als from the last meeting

	NEW ACTIONS		
# AI	Description	AC/person	
1_apr2023	Large scatter of LOD w.r.t. USNO	GFZ	→ status?
2_apr2023	LARES-2 target signature model	José Rodriguez	\rightarrow done; cf. 2)
3_apr2023	Publication on ILRS contribution to ITRF2020	Erricos Pavlis	→ status?
4_apr2023	LARES-PP submission folder and SINEX NEQ example	Mathis Bloßfeld	→ (partly) done
5_apr2023	New strategy for the processing of arcs before 1993	Cinzia Luceri, Mathis Bloßfeld	\rightarrow not yet done
6_apr2023	Differences in the WRMS time series between the CCs for BKG, DGFI and GFZ	ASI/JCET/DGFI	ightarrow not yet done

	OLD OPEN ACTIONS			
# AI	Description	AC		
1_nov2022	Daily&Weekly products from 07-08/2022 to be investigated (3D wrms too high)	DGFI/BKG/GFZ	→	not yet done
4_nov2022	daily&weekly Scale from 09/2022 to be investigated	NGSF]→	status?
6_nov2022	Implement v180 daily operational products	BKG/ESA/GFZ/JCET]→	done
7_nov2022	Implement v80 weekly operational products	BKG/ESA/GFZ/JCET]→	done
8_nov2022	Implement v280 weekly operational products then switch-off v230 (date TBD)!	BKG/DGFI/ESA/GFZ /JCET	→	(partly) done
9_nov2022	Complete Re-Analysis 1993-2022 (SLRF2020, new DHF & IERSEOPC04 20), v85 series	ALL ACs]→	ongoing

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

ITRF2020 update

- Z. Altamimi plans to frequently update the ITRF2020 on a yearly basis. The current plan is to update the ITRF2020 in the first half of 2024, meaning that the IAG Services should provide input to the IERS ITRS CCs until February 2024
- For the ILRS ASC, that means we have to provide three additional years of data (2021-2023). Since we also plan to do a complete reprocessing of the SLR data (1982-2020; v85) based on most recent standards and models, we can extend this reprocessing until the end of 2023 and provide the CCs this data set to be combined and send to the ITRS CCs. This means the extra workload for the ACs is limited! For the CCs, some additional workload is expected
- Plan so far: start of the reprocessing of 1982-2020 right now
- Before the reprocessing of the most recent three years, we have to update the ILRS DHF until the end of 2023 based on the operational products v280
 - this might be done in December 2023 or January 2024 by ASI
 - after the new DHF is available, all ACs can reprocess the last three years (January 2024)
 - the settings to be used for the reprocessing should be the same as for the operational weekly v80 processing
 - after the AC contributions are complete, CCs can combine the last three years and provide the ILRS contribution to the ITRF update end of February 2023
 - from my current point of view I would suggest not to include the new ACs in the contribution to the ITRF2020 update since the time is too limited to do everything now (in the next 4 months)

ITRF2020 update

- > v85 repro will be based on DHF (230621); this version is based on the v230 product which itself is based on the old models (e.g., SLRF2014, IERS 14C04, IERS mean pole) → inconsistency hopefully not causes significant changes in the biases...
- > Any problems with this strategy? Schedule too tight for ACs/CCs?

LARES-PP

- \geq I have to apologize that I was not able to provide you some information on this issue before!
- For the PP, one should estimate TRF, ERP, and Stokes coefficients up to d/o 6 into the SINEX files based on LA-1/-2, ET-1/-2 and LARES only
- \succ Examples:
 - Daniela's email from July 24th on the SINEX description document as well as example SINEX file with Stokes
 - SINEX files should contain datum-free NEQs!

	coefficients up to d/o 90.
•	SINEX file I've send around yesterday including TRF, EOP, Stokes coefficients of d/o 2

* ESTIMATED/REDUCED PARAMETERS					57 RBIAS	7124 67
- Keplerian elements	6 per arc at initial epoch	(reduced)			58 CN 59 CN	2
- station coordinates	X/Y/Z offsets at mid-arc epoch	(estimated) *	APPLIED_CONSTRAINTS		60 CN 61 SN	2 2
 - station-dependent range blases - x-/y-pole coordinate offsets - LOD offsets 	1 per day at 12h epochs 1 per day at 12h epochs	(estimated)	station coordinates range biases	1 m at the Earth's surface (loose constr.) 0.1 m at the Earth's surface (loose constr.)	62 SN 63 STAX 64 STAY	2 7845 A 7845 A
- solar rad. pres. scaling factor	1 per arc at mid-arc epoch	(reduced) *	<pre>other orbit parameters WEIGHTING_OF_THE_SATELLITES</pre>	0.01 [-, m/s^2] (loose constr.)	65 STAZ 66 STAX 67 STAX	7845 A 7839 A 7839 A
- empirical acc. (along-track)	1 per day at 0h epochs (LA/ET-1/2 1 sine/cosine at mid-arc epoch	2) (reduced)	weighting technique	(VCE) based on minimum constraint solutions	68 STAZ 69 STAX	7839 A 7811 A
- empirical acc. (cross-track)	1 per day at 0h epochs 1 sine/cosine at mid-arc epoch	(reduced)	+ LAGEOS-2 (1198 obs.):	1.790182158410E+00 9.776592245607E-01	70 STAY 71 STAZ 72 STAX	7811 A 7811 A 1884 A
 atm. pres. scaling factor Earth grav. par. (d/o 2) 	2 per day at 0h/12h epochs 1 per arc at mid-arc epoch	(reduced) (estimated)	+ Etalon-1 (79 obs.): + Etalon-2 (95 obs.): + LARES (1657 obs.):	4.982399625988E-02 2.850827820646E-01 3.283991970276E-01	73 STAY 74 STAZ 75 STAX	1884 A 1884 A 1873 A
			+ Stella (1049 obs.): + Starlette (1583 obs.):	4.496789510609E-02 2.743457864438E-02	76 STAY 77 STAZ 78 STAX	1873 A 1873 A 1893 A
			+ Ajisai (2340 obs.): + Larets (447 obs.):	3.078724376982E-02 1.426351821169E-03	79 STAY 80 STAZ 81 STAX	1893 A 1893 A 1890 A
			+ LARES-2 (1526 obs.):	3.618397145858E-01	82 STAY	1890 A

ILRS ASC analysis document website

- Public area <u>https://edc.dgfi.tum.de/en/ilrs-ac/</u>
- Internal area <u>https://edc.dgfi.tum.de/en/ilrs-ac/products/</u>
 - access to the internal area requires a registration at EDC (approval by C.Schwatke and me; only AC responsible persons)

\rightarrow G	O A https://edc.dgfi.tum.de/en/ilrs-ac/ ⅔A ☆	⊘ ±	ະ ປີ ≡					Extension:	*.sp3
	You are logged in as blossfeld	My Profile Lo	ogout					URL:	/pub/slr/products/reanalysis_w_SLRF2014/[YYMMDD]/
			$\leftarrow \ \ \rightarrow$	C A https://edc.dgfi.tum.d	de/en/ilrs-ac/	本 公	⊘ ±	Access:	Public
ROLAS Data Center (ED	IC) orschungsinstitut	ПЛ		different data form	ats: MERIT-II, CRD(v1), CRD(v2)				
chnische Universität Mün	chen		1	 Stanford counter is 	ssue> link to special website/file at EDC				
				 list of "old" biases t 	to be applied to the data before 1993.0			Version:	v70 - v74
elcome	Documents for the Data Analysis	-		Analysis (backgrou	ind models, etc.)			Description:	ASC operational TRF+ERP product based on SLRF2014, IERS 14 C04, the legacy ILRS DHF and the IERS mean pole (like v170)
duata	This page is under construction and will be completed coop!			In general: <u>IERS Ci</u> TVG potentially use	ed (Erricos' time series, COST-G, EIGEN, etc.)			Production Cycle	weekly
ations	This page is under construction and will be completed soon!			Earth tides (IERS C	Conventions 2010)			Estantian	*0
atollitos	This page is thought as a repository for the data and backgroundmodels needed for a reliable analysis	5		Ocean tides: some	models like EOT, GOT, etc.			Extension:	".sp3
adiction Dravidor	of SLR observations. The focus is currently put on the ILRS ASC (Analysis Standing Committee)			Atmospheric tides: Tropospheric refra	Bode and Biancale			URL:	/pub/slr/products/orbits/[/ageos1 /ageos2 eta/on1 eta/on2]/[YYMMDD]/
ediction Provider	information on SLR and the ILRS in general can be found on the official ILRS website hosted at			relativistic effects:	Lense-Thirring, deSitter, Schwarzschild			Access:	Public
eration Center (OC)	https://iirs.gsfc.nasa.gov/			NTL data (gravity +	F loading): ESMGFZ, etc.				
ang Lists	Official ILRS Analysis Centers (ACs) and Combination Centers (CC) might register at EDC and login to			 EOP: IERS XX C04 					
ls	the internal ASC site in order to have access to recent discussion topics and data sets available to the			sub-daily EOP: Des IERS secular polo	sai and Sibois			Version	v130 - v136
C-API	ASC only.			solar radiation	induct				
ks	Space segment			 Earth albedo and in 	nfrared radiation			Extension:	*.snx, *.sum, *.sp3
	· Information on the satellites tracked with SLR can be found at the EDC website			ephemeris (JPLXX)	X) and planets usually used			URL:	/pub/sir/products/pos+eop/[YYYY]/[YYMMDD]/
EDC	 Up to now (July 2023), the satellites used for the operational (official) products of the ILRS ASC are LACEOS.1/22 (LA.1/2) and Etalon1/2 (ET.1/2) 			 gravity field of the l solar flux and indic 	Moon es			Access:	Public
RS-AC	• <u>TS file</u>			Operational produc	te				
ducto	 recommendations for integration step size, etc. 								
10015	Ground segment			List of ACs				Version:	v170 - v176
	ILRS DHF (most recent and former versions)			current operational combined), predict	I (official) ILRS ASC products: v180, v80, v280, SP3c orbitions in CPE(v2) + latencies	ts (single-AC +		Description:	ASC operational TRE+ERP product based on SI RE2014, IERS 14 C04, the
	ILRS TRF (SLRF2020 and former solutions)			future operational	products: v300, etc.			Boothpalon.	legacy ILRS DHF and the IERS mean pole
	 ILRS eccentricity file (most recent and former versions)> ? ILRS occupation file> ? 			 former operational 	products: v170, v70, v230			Desident's a Deside	
				table with settings t	for operational products (AC-dependent)			Production Cycle:	ualiy
	Ubservations (to LA-1/-2, ET-1/-2)			e.g., data rejection e.g. observation of	i criteria (residual, obs per pass, obs per station) utoff elevation angle			Extension:	*.snx, *.sum
	different data formats: MERIT-II, CRD(v1), CRD(v2)			- c.g., observation c	aton otoriation ungio			URL:	/pub/slr/products/pos+eop/[YYYY]/[YYMMDD]/
	 stantorg counter issue> link to special website/file at EDC list of "old" biases to be applied to the data before 1993.0 			Extended space se	gment				Public
				 attitude, maneuver 	, mass history, ILRS phase center information			ACCESS:	Pudiic
	Analysis (background models, etc.)		4	TS models for other	er spherical satellites		L	_	

New ILRS ACs \rightarrow benchmark tests

- Organization of the benchmark tests for the two new ACs must be done by the ASI CC and me. Erricos explained me how the benchmark testing of a CNES and a GRGS solution might look like...
- GRGS uploaded so far from 2021 onwards the operational v70 and v170 solutions a)
 - Antonio (ASI CC) might check some of their SINEX files if the format is OK
 - after confirmation, 1-2 months of daily/weekly v180/v80 solutions should be submitted and the ASI CC should try a combination with them
 - both ACs should make sure that their SINEX file COMMENT block contains a detailed description of their processing strategy including settings and standards used as precise as possible (good examples by other ACs available!)
 - in addition, the SP3c files for LA-1/2 and ET-1/2 should be provided together with the weekly solution
- CNES should directly provide one v180 SINEX test file to ASI CC for format checking... after approval, they should also submit 1-2 b) months of v180 and v80 solutions
- After the benchmark is passed C)
 - both ACs should provide the v180 and v80 on a solid operational basis
 - both ACs should work on providing the v280 and v320 (including LARES-2) on an operational basis
 - as well as providing the v85 reprocessing solutions afterwards.
- From my current point of view I would suggest not to include them in the contribution to the ITRF2020 update since the time is too \succ limited to do everything now (in the next 4 months). Anyway, for future ITRF updates and ILRS pilot projects, these ACs will provide a valuable extension to our ASC products... Other opinions? Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München 8

Update of DSC files

Before, I will update the blanc form ;-)

dgfi.dsc - Editor Datei Bearbeiten Forn	nat Ansicht Hilfe
	INTERNATIONAL LASER RANGING SERVICE
Deut	sches Geodaetisches Forschungsinstitut (DGFI)
	Analysis Strategy Summary
ANALYSIS CENTRE	Deutsches Geodaetisches Forschungsinstitut (DGFI) Munich, Germany
CONTACT PERSONS	H. Mueller (mueller@dgfi.badw.de; tel +4989230311277) D. Angermann (angerman@dgfi.badw.de; tel +4989230311217)
SOFTWARE USED	DOGS-OC 5.2 DOGS-CS 4.9
ILRS PRODUCTS	<pre> weekly solution for coordinates of global SLR stations and daily Earth Orientation Parameters (x,y-pole, LOD, UT1-UTC) (SINEX format) daily resolution weekly orbits for Lageos1/2 and Etalon1/2 (sp3c format) </pre>
PREPARATION DATE	effective since June 1, 2003
ļ.	MEASUREMENT MODELS
 Satellites used	LAGEOS-1, LAGEOS-2, ETALON-1, ETALON-2

0	Parent Directory					
	archive					
TXT	aas.dsc 2015:01:12 14:44:48 13.11KB					
TXT	asi.dsc 2014:04:08 17:20:10 13.43KB					
TXT	bkg.dsc 2014:11:06 12:34:33 13.54KB					
TXT	blank.dsc 2006:10:25 14:36:15 8.67KB					
TXT	code_qc.txt 2008:08:18 12:31:23 1.37KB					
TXT	csr.dsc 2013:11:05 15:52:28 13.66KB					
TXT	dgfi.dsc 2013:08:28 12:58:34 12.78KB					
TXT	dgfi_qc.txt 2017:10:17 12:55:46 13.09KB					
TXT	esa.dsc 2015:04:16 13:00:01 19.75KB					
TXT	ga.dsc 2007:11:27 04:57:25 12.9KB					
TXT	gfz.dsc 2017:11:13 15:11:32 12.19KB					
TXT	gld.dsc 2022:03:10 17:51:34 13.89KB					
TXT	grgs.dsc 2013:10:01 12:44:22 9.45KB					
TXT	hitu_qc.txt 2008:08:18 12:31:17 12.26KB					
TXT	infn.dsc 2014:12:02 17:11:44 9.53KB					
TXT	jcet.dsc 2012:10:19 20:38:29 13.36KB					
TXT	jcet_qc.txt 2008:08:18 12:31:10 14.69KB					
TXT	kasi.dsc 2014:09:25 11:46:30 14.65KB					
TXT	larase.dsc 2014:10:08 17:30:51 10.63KB					
TXT	mcc_qc.txt 2014:02:28 14:54:02 11.63KB					
TXT	nsgf.dsc 2007:11:14 15:04:13 13:05KB					
TXT	pul.dsc 2010:04:28 13:11:43 10.4KB					
TXT	shao.dsc 2017:11:07 20:07:14 13.11KB					
TXT	shao_qc.txt 2017:11:07 20:07:14 12.98KB					

ILRS ASC MEETING

CNES « AC CANDIDATE » STATUS

2023/10/26

Franck Reinquin – CNES Adrian Baños-Garcia - CLS

What's new?

· cnes · · ·

- System
- The CNES cluster underwent a major overhaul, starting in June : new CPU's (AMD), new storage appliances, operating system upgrade, new tools (load leveller, ...).
 The GNSS people are happy with the increase in computing power. We are happy to have a stable platform again.
- Software
- Upgrade to GINS 23.1 : handles different station biases for different laser colours
- Upgrade to SLRF2020 (+ DHF, target signature files) and the latest models (IERS 20 C04 EOP, Desai-Sibois...)
- Daily production of v180 solutions, weekly production of v80 solutions. Checked against other CA's.
- No v280 solution so far.
- Status
- Ready to have our solutions evaluated. Waiting for instructions.

ESOC ILRS AC Status

Tim Springer and Erik Schoenemann

26/10/2023

ESA UNCLASSIFIED - For Official Use

European Space Agency

ESA ILRS AC Status (1/2)

- V230 (V231) solutions still running manual
 - Never anticipated the ITRF2020 switch to take so long....
 - Hopefully, parallel submissions not too much longer now....
- ITRF2020 (v80/v180/v280) solutions running routinely since June 2023
 - Did a resubmission after the first couple of weeks due to an error in our interpretation of the bias handling file
- ITRF2020 solution with LARES-2 (v320) running also since June 2023
 - Reported on this briefly

ESA UNCLASSIFIED - For Official Use

European Space Agency

ESA ILRS AC Status (2/2)

- LARES
 - LARES is included in our initial 21-day cleaning step since Feb 2012
 - Ready for fully including LARES
 - Need to check and validate our gravity field SINEX implementation
 - (thanks for SINEX example Mathis)

ESA UNCLASSIFIED - For Official Use

Tim Springer | ESOC | 26/04/2023 | Slide 3

•

__ II ▶ :: ━ + II ■ ≝ __ II II __ = ≅ **...** № II __ II = ₩ ₩ ...

ASIAC&CC report

A. Basoni , D. Sarrocco, V. Luceri e-GEOS S.p.A., ASI/CGS - Matera

G. Bianco Agenzia Spaziale Italiana, CGS - Matera

ILRS ASC - Virtual, 26/10/2023

ASI/CGS Activities since last ASC meeting

- ACs performance check
 - Product submissions
 - 3D wrms of the residuals w.r.t. SLRF (daily and weekly)
 - Scale
 - Geocenter motion
 - LOD
 - Orbits: RMS of residuals w.r.t. combination
 - ILRS ACs orbit agreement
- Activities to control systematic error.
- Check of products to be launched as new operational

Daily v170 ACs contribution to ILRSA solution 2022/10/19 – 2023/10/19

Daily v170 ACs contribution to ILRSA solution (only valid SINEXs) 2022/10/19 – 2023/10/19

Weekly v70 ACs contribution to ILRSA solution 2022/10/19 – 2023/10/19

Weekly v70 ACs contribution to ILRSA solution (only valid SINEXs) 2022/10/19 – 2023/10/19

Stations coordinates from daily solutions

3D wrms of the residual w.r.t. SLRF2014 GLOBAL SITES

Stations coordinates from daily solutions

Stations coordinates from daily solutions

Stations coordinates from weekly solutions

3D wrms of the residual w.r.t. SLRF2014 CORE SITES

Weekly -Number of observations for ACs

(Weekly Data) Observation number

Scale from daily solutions

(Daily Data) Parameters w.r.t. ITRF

Date [yy/mm/dd]

Scale from weekly solutions

Geocenter motion from daily solutions

EOP from daily solutions

(Daily Data, day = 6) EOP w.r.t. USNO (Daily Data, day = 6) EOP w.r.t. USNO 2000 3000 Legend Legend asi ж asi - ** 1500 bkg ж bkg ж 2000 dgfi dgfi 1000 esa esa gfz gfz 1000Y-pole [uas] [uas] 500 ж ж ilrsa ilrsa jcet jcet ж ж Ô nsgf nsgf X-pole -500 -1000 -1000-2000 -1500 ж -2000 -3000 22/12/01 23/03/01 23/04/01 23/05/01 23/06/01 23/07/01 22/10/01 23/01/01 23/06/01 23/07/01 23/08/01 23/10/01 23/11/01 23/11/01 22/10/01 22/11/01 23/01/01 23/02/01 23/08/01 23/09/01 23/10/01 22/11/01 22/12/01 23/02/01 23/03/01 23/04/01 23/05/01 23/09/01 Date [yy/mm/dd] Date [yy/mm/dd] (Daily Data, day = 6) EOP w.r.t. USNO Legend Legend asi * 400 bkg Ж dgfi asi esa 200 bkg gfz ж * ilrsa LOD [us] jcet ж dgfi Ж nsgf * Û ж esa gfz ж -200 ilrsa Ж -400 jcet Ж 23/09/01 nsgf Ж 22/10/01 23/10/01 22/11/01 22/12/01 23/01/01 23/02/01 23/03/01 23/04/01 23/05/01 23/06/01 23/07/01 23/08/01 23/11/01

Date [yy/mm/dd]

LAGEOS1 orbits – RMS of residuals w.r.t. combination

LAGEOS1 orbits – RMS of residuals w.r.t. combination

LAGEOS2 orbits – RMS of residuals w.r.t. combination

LAGEOS2 orbits – RMS of residuals w.r.t. combination

ETALON1 orbits – RMS of residuals w.r.t. combination

ETALON1 orbits – RMS of residuals w.r.t. combination

ETALON2 orbits – RMS of residuals w.r.t. combination

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]
LAGEOS1	5.7	23.2	25.9
LAGEOS2	6.6	26.8	29.9
ETALON1	29.0	132.4	127.6
ETALON2	34.7	124.9	123.1

Mean RMS over the period 2022/10/01-2023/10/01

Station Systematic Error Modeling

In 2015 ILRS launched a multi-year effort to address and resolve the SLR scale issue: Station Systematic Error Modeling Pilot Project (**SSEM PP**) to estimate RBIAS simultaneously with the station positions.

- Analysis since **01/1993**.
- Weekly estimation of coordinates, EOP and range biases RB
- Time frame for the Pilot Project: 1993 2020 for ITRF2020
- Data: LAGEOS , LAGEOS 2, ETALON1-2
- Time series with separate range biases for LAGEOS, combined for ETALON

Operational Data Handling file

- Data Handling File (DHF) used for ITRF2020 was the version **210416** (yymmdd), from January 1993 to December 2020.
- The DHF was extended to the end of 2022 as a result of the SSEM-X project, version **230328**.
- An updated version of the DHF file was released to include a paragraph that is directed to general POD users of SLR data, not necessarily linked to the ASC, version 230621: http://geodesy.jcet.umbc.edu/ILRS_ASC_RESOURCES/SLRF2020/ILRS_Data_Handling_File_2023.
 06.21.snx
- All ACs are delivering WEEKLY SINEXs to extend the time series (v23* series) to the current epoch.
- A weekly production chain of SSEM-like SINEXs file to routinely extend the RB time series (v230) was set by the ILRSA CC to check if any update of the DH file is needed.
- ILRSA CC is testing a change-point detection (CPD) algorithm, e.g. based on Pruned Exact Linear Time to support the analysts in their search for a potential new discontinuity in range bias series. A preliminary test to set parameters was performed on v230 series.

SSEM-X solutions – v230

AC	# SINEXs v23*	Start date	End date
ASI	1735	930109	231014
BKG	1654	930109	231014
DGFI	3112	930109	231014
ESA	2994	930109	231014
GFZ	1657	930109	231014
JCET	1752	930109	231014
NSGF	1754	930109	231014
Expected	1605	930109	231014

All ACs to the current date 19/10/23 are delivering v230 product routinely to EDC server (with some discontinuities in the operations).

DHF extension

7840	2007-02-07 2022-12-21	-2.2	0.1 mm (DHF)
7840	2007-02-07 2023-10-08	-2.1	0.1 mm

*Considering v230 to 231014.

CPD test

Herstmonceux, United Kingdom (HERL)

2006-12-20 2023-10-11 -2.1 0.1 mm

-11.1

1.4 mm

0.5 mm

0.3 mm

0.3 mm

CPD test

**CPD Considering v230 to 231014.

Matera (MLRO)

No ACs is handling the error imposed by the Stanford counter (?!) for HERL station for period 1995-2007 (as suggested by NSGF in 26/04/2023 ASC meeting)

New ILRS routine products

• The SLRF2020 and associated DHF were sent to the 7 ACs involved in REPRO2020 (28/03/2023) as input for the new products (v80, v180 & v280):

http://geodesy.jcet.umbc.edu/ILRS_ASC_RESOURCES/

- v80, v180 and v280 products are produced in parallel with the current operational ones in order to check the new solutions.
- All ACs with the exception of BKG to the current date 19/10/23 are routinely delivering v180, v80 (including orbits) and v280 products to EDC server:

/pub/slr/products/test/daily_v180 /pub/slr/products/test/weekly_v80 /pub/slr/products/test/ssem_v280

• Latency for v80 and v280:

sunday 1		sat 7	sun 8	 sat 14	sun 15	mon	tue 17	wed 18	
						16			
Data arc from 1 to 7						AC	CC		
							V80 V280	V80V280	
							arc 1-7	arc 1-7	

- ILRSA CC carried out test combinations and provided feedback to the ACs on their solutions to quickly arrive at convergence on new products.
- ILRSA v180, v80 and v280 series were computed (230401 230930).
- ILRSA CC computes routinely the combined solution for all the products. The proposed date for the release of the new operational products can be set.

230401 – 231019 - # of files							
	v180	v80	v280	v80_orbits			
ASI	194	27	28	99			
BKG	*127	*10					
DGFI	200	28	28	112			
ESA	175	26	26	104			
GFZ	123	28	28	112			
JCET	102	28	26	**112			
NSGF	176	26	25	104			

*uploaded on 23/10, at this stage not considered in ILRSA (need fix) **uploaded on 19/10, at this stage not considered in ILRSA

Current Operative Products VS New Operative Products (v170/v170/v230) (v180/v80/v280)

Stations coordinates from daily solutions (v180/v170)

3D wrms of the residual CORE SITES

DGFI: same behaviour for v170/v180 daily station coordinates 3D-WRMS * on 03/10 JCET uploaded a new set of SINEXs after a fix (v181), to be considered in next ILRSA series

Stations coordinates from weekly solutions (v80/v70)

3D wrms of the residual CORE SITES

DGFI: same behaviour for v70/v80 weekly station coordinates 3D-WRMS * on 03/10 JCET uploaded a new set of SINEXs after a fix (v81), to be considered in next ILRSA series

Scale from daily solutions (v180/v170)

w.r.t ITRF2020: v180

w.r.t ITRF2014: v170

DGFI: not aligned with others ACs on v180 daily Scale

Scale from weekly solutions (v80/v70)

Date [yy/mm/dd]

w.r.t ITRF2020: v80

w.r.t ITRF2014: v70

DGFI: not aligned with others ACs on v80 weekly Scale untill Mid-July

Geocenter motion from daily solutions (v180) v180 v170

DGFI: not aligned with others ACs on v180 daily Geocenter values

Geocenter motion from weekly solutions (v80)

v70

EOP from daily solutions (v180)

EOP from weekly solutions (v80)

LAGEOS1 orbits (v80) – RMS of residuals w.r.t. combination

LAGEOS2 orbits (v80) – RMS of residuals w.r.t. combination

NSGF: Cross RMS w.r.t. ILRSA divergency

ASI: Anomalous outlier

ETALON2 orbits (v80) – RMS of residuals w.r.t. combination

DGFI:

From August to September higher

NSGF:

Cross RMS w.r.t. ILRSA divergency

Two single outliers w.r.t ILRSA

v80

v80

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]	
LAGEOS1	6,16	41,25	33,31	
LAGEOS2	5,95	40,67	39,55	
ETALON1	27,38	132,51	144,59	
ETALON2	30,70	137,01	154,82	

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]	
LAGEOS1	6,16	24,78	21,66	
LAGEOS2	5,86	25,47	24,25	
ETALON1	28,49	110,27	137,16	
ETALON2	29,88	116,03	147,19	

Mean RMS over the period 2023/04/01-2023/10/01 (after outliers exclusion)

Without NSGF

v80

v80

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]	
LAGEOS1	6,16	41,25	33,31	
LAGEOS2	5,95	40,67	39,55	
ETALON1	27,38	132,51	144,59	
ETALON2	30,70	137,01	154,82	

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]
LAGEOS1	5,75	23,57	21,43
LAGEOS2	5,54	22,71	24,17
ETALON1	19,28	88,33	83,69
ETALON2	22,02	91,31	94,65

Mean RMS over the period 2023/04/01-2023/10/01 (after outliers exclusion)

Without NSGF & Without DGFI

v70

v80

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]
LAGEOS1	5,9	23,8	25,8
LAGEOS2	6,3	28,0	26,9
ETALON1	31,7	133,4	130,6
ETALON2	36,9	124,0	129,0

Satellite	Radial [mm]	Cross- track [mm]	Along- track [mm]
LAGEOS1	5,75	23,57	21,43
LAGEOS2	5,54	22,71	24,17
ETALON1	19,28	88,33	83,69
ETALON2	22,02	91,31	94,65

Mean RMS over the period 2023/04/01-2023/10/01 (after outliers exclusion)

SSEM Project – Stations coordinates

3D wrms of the residual CORE SITES

w.r.t ITRF2020: v280

w.r.t ITRF2014: v230

DGFI: same behaviour for v280/v230 weekly station coordinates 3D-WRMS * on 18/10 JCET uploaded a new set of SINEXs after a fix (v280), to be considered in next ILRSA series

Thank you

BKG Report 10-2023

D. Koenig, U. Meyer (AIUB), D. Thaller

Status of new Operational Series

- Installation of BSW 5.5 with largely renewed processing scheme (in view of adding LARES)
- Considerable time needed to get BSW 5.5 running at BKG's SLR AC
- v180: running since 07-26-2023 upload to be implemented these days
- v80 : running since 08-21-2023 upload to be implemented these days
- v280: not yet implemented coming soon
- v85 : considerable time invested ready to be processed from 1993 on

Report of the DGFI-TUM ILRS AC

Mathis Bloßfeld, Alexander Kehm

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

ILRS ASC meeting – 2023-10-26

Implementation of new analysis models

- New ITRS realizations (Bloßfeld et al., 2023, VIWLR)
 - ITRF2020 (Altamimi et al., 2023) + respective metadata
 - DTRF2020 (Seitz et al., 2023) + respective metadata
 - JTRF2020 (Abbondanza et al., 2023)

Implementation of new analysis models

- New ITRS realizations (Bloßfeld et al., 2023, VIWLR)
 - ITRF2020 (Altamimi et al., 2023) + respective metadata
 - DTRF2020 (Seitz et al., 2023) + respective metadata
 - JTRF2020 (Abbondanza et al., 2023)
- For the new products, one should use
 SLRF2020 (231002; Pavlis et al., 2023)
 + PSD models for 7110, 7237, 7308,
 7328, 7358, 7403, 7405, and 7838!

Implementation of new analysis models

- > New handling of ocean tidal models implemented in DOGS-OC (motivated by implementation problems of FES2014b)
 - for details, please see Kehm et al. (2023, VIWLR) and Mayer-Gürr et al. (2023, EGU)

								пп	https://ifg.tugraz.at/ocean-tides
Appl	lying tidal admi	ttance reduces the a	rc RMS by multiple	a reso					• FES2014b
		EOT11a with	18 main 0 secondary	18 main 63 seco (IERS 2	18 main ndary 335 sec 010)	ondary			 EOT20, EOT11a TiME22 Further models follow
Sa	tellite	altitude	arc rms of S	LR fits [c	m]				Atmospheric tides
LA	GEOS-1	5850 km	1.2108	1.1931	1.1928				• TiME22
LA	RES	1450 km	3.1290	2.7630	2.7546				•
Ja	son-3	1336 km	2.5687	2.4275	2.4263				Reference implementations
or t	the satellites us	sed in this study, the i	maximum degree/	order	EOT20 with	19 main 0 seconda	anv	19 main 335 secondary	MATLAB, Python, Fortran
30,	90, or 180) has	s no significant impac	t on the results			0 0000/100	ary (see secondary	Skripts for converting ocean tide models
Sma	all differences b	etween the results fo	r EOT11a and EO	T20	Satellite	arc rms o	of SLR 1	fits [cm]	from gridded NetCDF grids to spherical
 EOT20 long-period tides could contain non-tidal loading 		ing	LAGEOS-1	1.2111		1.1939	harmonics		
~	effects which	are not present in EC)T11a	C fito	LARES	3.1388	2	2.7751	generating all necessary files
~	we expect the	at these cause the ch	anges in SER RM	5 IIIS	Jason-3	2.5658		2.4254	 based on GROOPS

6

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

https://github.com/groops-devs/groops
ILRS product array at DGFI-TUM

ILRS label	description	file format
v170	daily LA-1/2 and ET-1/2 TRF and ERP solution	SINEX
v70	weekly LA-1/2 and ET-1/2 TRF and ERP solution	SINEX
v70-sp3c	weekly LA-1/2 and ET-1/2 (reduced dynamic) orbit solution	SP3c
	daily orbit predictions for LA-1/2 and ET-1/2	CPF(v2)
v230	weekly LA-1/2 and ET-1/2 TRF and EOP solution (including RBs for all stations)	SINEX
v180	daily LA-1/2 and ET-1/2 TRF and ERP solution (based on most recent standards and files)	SINEX
v80	weekly LA-1/2 and ET-1/2 TRF and ERP solution (based on most recent standards and files)	SINEX
v80-sp3c	weekly LA-1/2 and ET-1/2 orbit solution (based on most recent standards and files)	SP3c
v280	weekly LA-1/2 and ET-1/2 TRF and EOP solution (including RBs for all stations; based on most recent standards and files)	SINEX
v85	Reprocessing 1982-2023 of LA-1/2 and ET-1/2 TRF and EOP solution (based on most recent standards and files)	SINEX
v320	weekly LA-1/2, ET-1/2 and LR-2 TRF and EOP solution (including RBs for all stations; based on most recent standards and files)	SINEX
v300	weekly LA-1/2, ET-1/2 and LR-1 TRF, EOP and SH deg2-6 solution	SINEX
	daily 10-satellite TRF and EOP solution	SINEX
	weekly 10-satellite TRF and EOP solution	SINEX
	weekly 10-satellite GM solution	SINEX
	weekly 10-satellite SH deg1 solution	SINEX
	weekly 10-satellite SH deg2 solution	SINEX
	weekly 10-satellite (reduced dynamic) orbit solution	SP3c
	weekly 10-satellite TRF, EOP and SH deg2-20 solution	SINEX
	daily orbit predictions for LA-1/2, Ajisai, Stella, Starlette and Larets	CPF(v2)

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Future plans at DGFI-TUM

- Revisit NTL application at observation level in DOGS
- Further tests on the refined tide handling:
 - test 'combined' ocean tide models, e.g. replace long-period tides in EOT20
 - test alternative *tidal admittance* methods
 - test alternative atmospheric tide models with more main tides (e.g. AOD1BRL06, TiME22, etc.)
 - site displacements not yet consistent!
- Work on pilot project for the inclusion of LARES
 - test series nearly finished
- Implementation of Sentinel satellites (TOPEX and Jason-1/-2/-3 already implemented)
 - focus on combined SLR/DORIS POD

NSGF AC report

ILRS Analysis Standing Committee Meeting, 26 October 2023 online

Andreja Susnik (1), Graham Appleby (2)

(1) BGS Space Geodesy Facility, Herstmonceux Castle, UK; (2) BGS Honorary Research Associate, SGF;

Natural Environment Research Council

NSGF AC activities

• Finished, ongoing

Solution	Submission Status		
v80	weekly (with 10-day delay; snx + orbits)	(routinely since 18 April 2023)	
v180	Daily	(routinely since 18 April 2023)	
v230	weekly	(routinely since January 2023)	
v415	two submissions (on 22/12/2022 and end of February);	\checkmark	
v280	weekly (with 10-day delay)	(routinely since July 2023)	
v85	weekly	√ (1993-2023)	

- LARES 2 solutions (LG1/LG2/ET1/ET1/LA2) between August 2022 up to the end of September 2023 generated and provided to Jose for CoM related work
- Evaluation of DTRF2020 implemented PSD corrections in SATAN, just finished processing of 20 years...
- Analysis of data from other stations that used Stanford counters

Revisiting the 'Stanford' systematics issue - progress report

Graham Appleby, Andreja Susnik

NSGF AC, SGF Herstmonceux

BGS

Analysis Standing Committee virtual meeting, 26th October 2023

Background

- Given the long timespan of geodetic solutions beginning from the two-LAGEOS era of 1993 onwards:
- It's important to minimise systematic measurement error to realise the full potential of the results
- A major advance towards this aim is the ILRS ASC-developed SSEM technique This technique effectively removes systematic range error from all stations' data; **but**:
- Stanford time-of-flight counters (SR) were in common use, particularly at the European stations, in the 1990s and 2000s
- The discovery at Herstmonceux of a *range-dependent* systematic measurement error:
- Provoked extensive tests being carried out on the SGF counters using a borrowed high-accuracy event timer

Submission from SGF for ITRF2020

- Seven-day orbital solutions using the two LAGEOS and two Etalon satellites:
 - SATAN code;
 - Updated CoM values from Rodriquez *et al, J Geod,* 2019
 - ASC Data Handling File for mean RB values to be applied and not solved
- But the range-dependent errors imposed by the Stanford counters:
 - Were **regrettably NOT** taken into account in these or the previous SSEM solutions
 - Will have impacted the validity of the handling file mean value RBs for HERL

Counters were in use 1994-2007

Extensive measurements of range-dependent (satellite) plus fixed (calibration) bias -reported in LR Workshop #15 (Gibbs) and in SLRMail 0891, Appleby & Gibbs, Jan 2002.

Reprocessing

This omission of the Stanford corrections by the NSGF (and all other) ACs for ITRF2020 submissions was discussed in detail by Susnik et al at the LR workshop in Spain in November 2022, where a scheme was developed:

To accommodate Stanford systematics in re-evaluation solutions:

- cancel a-priori RB for SR stations from the data-handling file;
- application of range-dependent and fixed-value correction to NPs as appropriate;
- estimating RB for every 7-day arc for all SR stations along with reference frame.

Example - Corrected height time series for Herstmonceux 1993-2022

- Stanford corrections applied to each NP
- RB solved-for along with reference frame

At the expense of some increase in noise, essentially bias-free Linear and annual fit gives slope of $-0.12 + - 0.04 \text{ mm yr}^{-1}$

Stanford counters at ILRS stations

- The success of this effort to use Stanford 'calibrations' to improve Hx geodetic height solutions:
- Particularly the realization that SSEM does not fully remove this problem:
- Prompted a re-visit to the work done at Herstmonceux (1) to calibrate a number of other counters from European stations
- Counters assessed at the time were from Borowiec, Potsdam, San Fernando, Graz, Zimmerwald

(1) Gibbs, P., 2002. Stanford Counter Comparison Results, Proceedings of EUROLAS Workshop 'Detecting and eliminating errors in the EUROLAS network', Herstmonceux, UK. <u>http://ilrs.gsfc.nasa.gov/reports/special_reports/eurolas_workshop.html</u>

Results from the EUROLAS Comparisons of 2002

Results from the EUROLAS Comparisons of 2002

All timers - Hx-D

Dates of applicability

Station	SR installed	SR removed	Notes
Borowiec	2002 May 07	-	
Potsdam	2001 May 20	2011 Apr 19	
San Fernando	2001 Aug 10	2022 Aug 30	
Graz	1982	2001 Aug 01	3*SR in cluster
Zimmerwald	1997 Jan 01	2006 Feb 03	
Herstmonceux	1995 Jan 01	2007 Feb 01	Actually 4 diff SRs

Examples of height time series from stations using SRs

San Fernando. Stanford installed in 2001 August – note ht jump.

Graz. Stanfords (in a cluster) until 2001 August

Next steps

For dates of applicability:-

- Make range-dependent table of corrections (format tbd) Share with all ACs
- Use in re-processing as per the Herstmonceux work Note – any impact of SR error on target-board calibration at the stations is not retrievable
- Error is specific to set-up at the station
- But will be removed by RB solution as per SSEM

