The ASI/CGS operational combination for the ILRS Pos+EOP Pilot Project

C. Sciarretta, V. Luceri

(cecilia@asi.it; luceri@asi.it)

ILRS AWG Meeting 22-23 April 2004, Nice, France
Scope

To illustrate ASI/CGS weekly combined solution in terms of

- method selection & implementation (quickly)
- updated results (up to 040410 solution)

within the frame of ILRS Pos+EOP Pilot Project

Our combined solution is based on the implementation of the loose combination method adapted to the operational reqs of the project.
Basically one can distinguish two distinct approaches that allow the combination of independent geodetic solutions.

- **Fiducial**
 Each solution is transformed to a conventional reference frame where parameters combination takes place. *The reference frame (datum) is part of the combination scheme, and dictates the applied constraints.*

- **Loose**
 Direct combination of loose constraint solutions. *The reference frame is defined stochastically and is unknown, no constraints are applied.*
The approach foresees the combination of solutions in the same reference frame. Since each solution has its own reference frame, at least a Helmert transformation shall be applied to each solution.
The approach foresees an automatic combination of loose solutions without estimating and removing a relative rotation between their reference frames. A preprocessing is necessary in case of constrained solutions.
The solution covariance matrix can be loosened in order to artificially enlarge the reference frame uncertainties.

\[C' = C + ALA^T \]

where:
- \(C' \) is the ‘loosened’ covariance matrix
- \(C \) is the solution covariance matrix
- \(A \) is the design matrix as defined above
- \(L \) is a diagonal matrix defining the degree of looseness

Under this conditions the reference frame biases are no more estimable and the Helmert transformation parameters could be treated stochastically. The design equations are simple identities between couples of solutions.
The ASI/CGS combination service for ILRS

Service operational requirements

Frequency: weekly

Issue: within 24:00 UT each Wednesday (CD)

Input: AC solution SINEX files available at 24:00 UT the day before (CD-1)

Parameters: Site Coordinates and EOP (x, y, LOD)

Procedure strategy

• Pre-processing (format check, loosening)
• Combination (normals, editing, iterations)
• Quality check and delivery

The whole processing chain is completely automated
Procedure overview

1) Reads sequentially the SINEX solution files and verify data integrity

2) First rough outlier detection (and loosening) of each input solution

3) Combination of the loosened solutions:
 - Data editing
 - Scale factor computation
 - Solve normal equations

4) Construction of the combined products and issue of the quick look report:
 - ITRF2000 frame transformation & delivery
 - Summary Report
 - Archiving
• The implemented SW procedure has been realized in the Matlab environment (Matlab functions + F90 subroutines).

• At present, the procedure runs on a PC; we plan to move it to HP WS.

• The procedure is completely automated and can be activated without human intervention.
The solution scale factor f_i is such that the reduced χ^2 of the combination is close to unity and that each solution contribution to the total χ^2 is equally balanced. The first guess for the combination is obtained with $f_i = 1$ for each solution:

\[\chi^2 = R_1^T C_1^{-1} R_1 + \cdots + R_i^T C_i^{-1} R_i = 1 \]

\[R_i^T (f_i C_i)^{-1} R_i = \cdots = R_1^T (f_1 C_1)^{-1} R_1 \]

\[\Rightarrow f_i = \frac{N}{\text{DoF}} R_i^T (C_i)^{-1} R_i \]

Where R_i and C_i are respectively the solution residuals and covariance matrix, N the number of contributing solutions, and DoF the solution degrees of freedom.

Example of estimated variance-covariance scale factor

<table>
<thead>
<tr>
<th>Solution week</th>
<th>ASI</th>
<th>DGFI</th>
<th>GFZ</th>
<th>NERC</th>
<th>JCET</th>
</tr>
</thead>
<tbody>
<tr>
<td>031008</td>
<td>7</td>
<td>15</td>
<td>11</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>031015</td>
<td>12</td>
<td>25</td>
<td>10</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>031022</td>
<td>11</td>
<td>30</td>
<td>10</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>031029</td>
<td>25</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040310</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>040317</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>040324</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>040331</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
ASI, DGFI, GFZ, NERC and JCET 28-d and 7-d weekly solutions have been combined. Solutions contain SSC and EOP according to the ILRS Pos+EOP Pilot Projects requirements, and have different characteristics listed below.

<table>
<thead>
<tr>
<th>Contributing Solutions</th>
<th>ILRS contribution start</th>
<th>ASI combination start</th>
<th>SINEX Solution Covariance Information</th>
<th>LOOSENESS (7-day weekly solutions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Translations mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tx, Ty</td>
</tr>
<tr>
<td>ASI</td>
<td>030630</td>
<td>030714</td>
<td>U COVA</td>
<td>1</td>
</tr>
<tr>
<td>DGFI</td>
<td>030707</td>
<td>030714</td>
<td>L COVA</td>
<td>1</td>
</tr>
<tr>
<td>GFZ</td>
<td>030630</td>
<td>030922</td>
<td>L INFO</td>
<td>1</td>
</tr>
<tr>
<td>NERC</td>
<td>031006</td>
<td>031006</td>
<td>L COVA</td>
<td>2</td>
</tr>
<tr>
<td>JCET</td>
<td>040221</td>
<td>040221</td>
<td>U COVA</td>
<td>2</td>
</tr>
</tbody>
</table>
Several features of the contributing solutions (e.g. the covariance issue), the new requirement on arc length, SINEX format imprecisions have contributed to the evolution of the SW procedure from an initial, prototype version to a more refined and operationally robust version.
Issued products

- **EOP-only SINEX file (ITRF2000-framed solution)**

 Header, File/Reference, Input/History, Solution/Statistics, Solution/Estimate, Solution/Matrix_Estimate L Cova

- **Pos+EOP SINEX file (loose solution)**

 Header, File/Reference, Input/History, Solution/Statistics, Solution/Epochs, Site/Id, Site/Eccentricity, Solution/Estimate, Solution/Matrix_Estimate L Cova

- **Summary Report**
Centro Geodesia Spaziale, Agenzia Spaziale Italiana, Matera, ITALY
Report on the combination of ILRS solutions.
File: asi.pos+eop.yymmdd.sum
Software: CoGeoS/Matlab
Hardware: PC PentiumIII
Contact: cecilia.sciarretta@asi.it

--
CONTRIBUTING SOLUTIONS

Legend:
Core Sites are labeled with a 'C' after the site ID.
Edited Sites are labeled with an asterisk '**' before the site ID
Edited EOP values are labeled with an asterisk '**' after the epoch

CHECKING SINEX FILES
--
--
sol1.yymmdd.snx, - passed (or diagnostics).
...
soln.yymmdd.snx, - passed (or diagnostics).
for each contributing solution

<table>
<thead>
<tr>
<th>s011.yymmdd.snx</th>
</tr>
</thead>
</table>

ITRF2000 TRANSFORMATION:

estimated Helmert parameters [mm, mas, ppm]

<table>
<thead>
<tr>
<th>Tx</th>
<th>Ty</th>
<th>Tz</th>
<th>Scale</th>
<th>Rx</th>
<th>Ry</th>
<th>Rz</th>
</tr>
</thead>
</table>

Site coordinate residuals with respect to ITRF2000 [mm]

Sigma's scaled by the factor: \(\sqrt{\text{chi2}} = x.xx\)

<table>
<thead>
<tr>
<th>Dome Num. Site</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>sigX</th>
<th>sigY</th>
<th>sigZ</th>
<th>3-DWRMS</th>
</tr>
</thead>
</table>

....

Global WRMS of 3-D residuals: xx.xx mm

EOP residuals with respect to Bull.A (daily), after ITRF2000 transformation [\(\mu\text{as}, \mu\text{s}\)]

<table>
<thead>
<tr>
<th>EPOCH</th>
<th>X-pole</th>
<th>Y-pole</th>
<th>LOD</th>
<th>sig-X</th>
<th>sig-Y</th>
<th>sigLOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>mjd</td>
<td>((\mu\text{as}))</td>
<td>((\mu\text{as}))</td>
<td>((\mu\text{s}))</td>
<td>((\mu\text{as}))</td>
<td>((\mu\text{as}))</td>
<td>((\mu\text{s}))</td>
</tr>
</tbody>
</table>

...

W-MEAN (\(\mu\text{as}\))

xxx.x xxx.x xxx.x

STD (\(\mu\text{as}\))

xxx.x xxx.x xxx.x

Preliminary editing factor: 10.0

Number of manually edited parameters: N
SUMMARY OF COMBINATION PROCESS

INPUT SINEX FILES:

<table>
<thead>
<tr>
<th>#</th>
<th>Agency</th>
<th>Filenames</th>
<th>Sites</th>
<th>EOP</th>
<th>EOPr</th>
<th>Edit</th>
<th>Scale</th>
<th>ChiSquare</th>
<th>Pars</th>
</tr>
</thead>
</table>

GLOBAL RESULTS:
Number of iterations, ChiSquare, RedChiSq, Estimated parameters, DoF, Editing Factor, No. of edited parameters

RESIDUALS WITH RESPECT TO THE COMBINED SOLUTION

Coordinate residuals (WRMS) [mm]:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Up</th>
<th>East</th>
<th>North</th>
<th>Global</th>
<th>Edited</th>
</tr>
</thead>
</table>

EOP RESIDUALS [µas, µs]:

<table>
<thead>
<tr>
<th>Weighted Mean</th>
<th>Weighted RMS (about the mean)</th>
<th>Edited</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (µas)</td>
<td>Y (µas)</td>
<td>LOD (µs)</td>
</tr>
<tr>
<td>X (µas)</td>
<td>Y (µas)</td>
<td>LOD (µs)</td>
</tr>
</tbody>
</table>
Summary Report (cont’d)

TRANSFORMATION PARAMETERS WITH RESPECT TO THE COMBINED SOLUTION

<table>
<thead>
<tr>
<th>Estimated Helmert parameters [mm, mas, ppm]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
</tr>
</tbody>
</table>

TRANSFORMATION ON ITRF2000

<table>
<thead>
<tr>
<th>Estimated Helmert parameters [mm, mas, ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
</tr>
</tbody>
</table>

Site coordinate residuals with respect to ITRF2000 [mm]

Sigma's scaled by the factor: sqrt(chi2) =

<table>
<thead>
<tr>
<th>Dome Num.</th>
<th>Site</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>sigX</th>
<th>sigY</th>
<th>sigZ</th>
<th>3-DWRMS</th>
</tr>
</thead>
</table>

Global WRMS of 3-D residuals: xx.xx mm

<table>
<thead>
<tr>
<th>EPOCH</th>
<th>X-pole</th>
<th>Y-pole</th>
<th>LOD</th>
<th>sig-X</th>
<th>sig-Y</th>
<th>sigLOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>mjd</td>
<td>(µas)</td>
<td>(µas)</td>
<td>(µs)</td>
<td>(µas)</td>
<td>(µas)</td>
<td>(µs)</td>
</tr>
</tbody>
</table>

W-MEAN (µas)

STD (µas)
Analysis results

In the following slides several results of the combined solution time series are presented.

EOP are the main objective of the solution, to contribute to the IERS operational products; combined site coordinates, anyway, are useful to verify the quality of the solution, in terms of comparison w.r.t. ITRF2000 and w.r.t other combined solutions.
ASI combined solution vs IERS EOP

IERS EOP “finals.data” as reference

ASI 7-day weekly combined solutions only

ASI combined solutions 040117 and 040131 have been recomputed!
EOP Comparison ASI/DGFI

031206 - 040410
Site Position Comparison ASI/DGFI/NCL

examples
Site Position Comparison ASI/DGFI/NCL

events
Site Position Comparison ASI/DGFI/NCL examples
Site Position Comparison ASI/DGFI/NCL examples

7838 Coordinate Residuals w.r.t. ITRF2000

X-Coordinate (mm)

ncl: WMEAN: 24.615 WRMS: 10.311
asi: WMEAN: 25.808 WRMS: 6.765
dgfi: WMEAN: 25.419 WRMS: 14.277

Y-Coordinate (mm)

ncl: WMEAN: 8.534 WRMS: 18.836
asi: WMEAN: -0.815 WRMS: 15.412
dgfi: WMEAN: -4.669 WRMS: 27.612

Z-Coordinate (mm)

ncl: WMEAN: -1.602 WRMS: 9.667
asi: WMEAN: -2.235 WRMS: 7.238
dgfi: WMEAN: -5.744 WRMS: 10.184
Global WRMS of 3-D position residuals vs time

030716 - 040410
Conclusive remarks

- ASI combined solution for ILRS Pos+EOP Pilot Project has been submitted since 030716, regularly (in terms of frequency and of contributing solutions handled) since 030924. It is compliant with the Pilot Project reqs after 031115 (7-day arc solutions).

- ASI combined solution implements a 'loose' approach within a fully automated procedure.

- The implemented 'loose' approach has provided consistent results with respect to the apriori reference values (IERS Bulletin A, ITRF2000) and with respect to the other combined solutions.
Conclusive remarks (cont’d)

• The 3-D WRMS of the coordinate residuals (w.r.t. ITRF2000) of the ASI 7-day combined weekly solutions, is about 15 mm (10 mm for the 28-day combined weekly solution).

• The 3 combined solutions (ASI, DGFI, NCL) show similar behavior for site coordinates time series.

• EOP & EOP-rate residuals (w.r.t. IERS Bulletin A):
 - the \overline{W}mean of the ASI combined X and Y pole residuals are about 0.1 an 0.3 mas respectively, with a scatter about 0.3 mas;
 - LOD residuals are on the order of 0.01 ms with a scatter of 0.07 ms;
 - similar patterns are visible in the residual time series of different combined solutions (ASI, DGFI)