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Abstract 
 
NASA’s SLR2000 is an autonomous, eye-safe, photon-counting satellite laser ranging (SLR) 
system. As such, it requires some unique real-time control elements that are not generally 
found in conventional, high powered, manned systems. These include autonomous 
mechanisms and associated software for: (1) maintaining telescope focus over wide ambient 
temperature excursions; (2) conducting automated star calibrations and updating mathematical 
mount models; (3) centering the optical receiver field of view (FOV) on the satellite return 
based on single photon returns; (4) varying transmitter beam divergence and point ahead; and 
(5) controlling the receiver spectral bandwidths and spatial Field-of-View (FOV).  Most of 
these real-time functions can be accomplished mathematically by utilizing a ray matrix 
approach. As an additional benefit, the ray matrix model can be used as a diagnostic tool to 
track the geometric size and orientation of beams and/or images anywhere in the system. 
Recent optical analyses of SLR2000 using the ray matrix model and experiences gained in 
satellite field experiments have led to some proposed modifications and simplifications to the 
optical transceiver, which will also be discussed.  
 
INTRODUCTION 
 
Paraxial ray matrices are a convenient and simple way to model ray propagation in optical 
systems [Kogelnik and Li, 1966]. In complex 3-dimensional systems, reflections off mirrors 
cause the propagation path to change direction several times, and one must go through a series 
of coordinate transformations where the precise form of the matrix depends on whether we 
are dealing with the p-component (in the mirror plane of incidence) or s-component 
(orthogonal to the plane of incidence) of the ray. In SLR2000, the ray changes direction 9 
times before encountering the exit window of the telescope. If we consider a segment where 
propagation is along the local d-axis, any ray can be represented by the vector 

( )sp spr αα=  where (p,s) is the transverse position of the ray at the optical element 

and (αp, αs) is the angle the ray makes with the d-axis when projected into the p-d and s-d 
planes respectively. Each optical element or propagation path between elements is represented 
by a 4x4 matrix, which operates on the position and direction of the ray. The SLR2000 optical 
train consists of three major subsystems: (1) optical transceiver; (2) the Coude mount; and (3) 
the main telescope. Each major subsystem can be represented by a single 4x4 matrix equal to 
the product of the element matrices making up that subsystem. From Figure 1, we see there 
are three parallel branches within the optical transceiver: (a) the transmitter/Risley prism path; 
(b) quadrant detector range receiver (two equal but orthogonally polarized paths) and (c) CCD 
star camera. In what follows, the initial propagation path for each branch (d-axis) runs 
vertically (down to up) in the figure, the positive p-axis on the transceiver bench points to the 
right of the figure (as if we were looking from behind the various elements toward the 
telescope), and the s-axis is directed out of the page toward the reader. 
 
In this paper, we provide a summary of the analytical results. A detailed mathematical 
analysis of the SLR2000 system [Degnan, 2004] yields the following 4x4 matrices for rays 



propagating from the transceiver bench to the telescope exit window. The matrices describing 
outward propagation through the three branches of the transceiver have the general form  
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All of the mount motion is contained in the matrix for the Coude mount given by 
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where dc = 1.742 m is the total Coude path length, α is the azimuth angle, ε is the elevation 
angle, and αo = 67.4o (defined in Figure 1 where North corresponds to 0o azimuth). Finally the 
telescope matrix is 
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and mt = 10.16 is the main telescope magnification and dt = 5.758 m.  
 
For outgoing rays, one now multiplies the three matrices together to transfer a ray emanating 

from one of the branches of the transceiver, xr
→

,  to the output window of the telescope, i.e 
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The transfer of incoming rays, inr
→

, from the telescope exit window to one of the three 
transceiver branches is given by the inverse of the matrix, i.e. 
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STAR CALIBRATIONS 
 
Overall system focus is maintained over a wide ambient temperature range by a computer-
controlled three-power beam expander located in the common transmit/receive path. The 
quality of the system focus is determined and controlled by the sharpness of star images in the 
CCD camera used for star calibrations. Periodic image checks ensure not only the sharpness 

       a = transmitter 
x =  b = quadrant detector 
       c = star camera 



of the star image for calibration but also the collimation of incoming and outgoing beams in 
other legs of the transceiver and the stability of the system focus at the variable aperture field 
stop (spatial filter).  
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Figure 1: Block diagram of the upgraded SLR2000 optical transceiver. 
 
For star calibrations, the ray model provides the information needed to automatically drive an 
off-axis star to the telescope optical axis. If np and ns respectively denote the column and row 
number of the pixel containing the star image in the CCD array as viewed from behind the 
detector, the offset of the star image in azimuth and elevation space is given by the matrix 
equation  
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In particular, it provides the scale factor (0.5 arcsec/pixel) relating the magnitude of the 
position offset of the star image in the CCD camera to the magnitude of the angular offset in 
azimuth-elevation space. The dependence on γ and ε provides the star (or satellite) image 
orientation in the CCD camera as a function of the instantaneous mount azimuth-elevation 
angle.  
 
RECEIVER POINTING ERROR CORRECTION 
 
In high power manned systems, the operator can manually make two-axis corrections in the 
pointing angle in an attempt to peak the signal strengths off the satellite. This is not possible 
in a photon-counting system where the mean signal per pulse is normally much less than one 
photoelectron. Thus, SLR2000 uses a quadrant ranging detector, which, in addition to 
providing precise timing on single photoelectron returns, informs the system computer of the 
quadrant that detected it. This information is accumulated over many laser fires (e.g. a frame 
interval) by a Correlation Range Receiver (CRR), which extracts the signal counts and 
discards the vast majority of background noise counts. The remaining counts (mostly signal) 
are then tallied by quadrant of occurrence, and the differences between quadrant counts are 
then used to compute a centroid for the count distribution during that frame [Degnan and 
McGarry, 1997]. The ray model provides the following equation 

 
for converting the centroid position (pc,sc) on the quadrant detector into azimuth and elevation 
pointing corrections, ∆α and ∆ε. From the equation, we also see that a 1 mm displacement of 
the centroid from the optic axis corresponds to a 10.5 arcsec pointing error and the orientation 
is again determined by the dependence on γ and ε. 
 
TRANSMITTER POINT AHEAD 
 
Balancing the count distribution among the detector quadrants orients the receiver/telescope  
optical axis toward the “apparent” position of the satellite, i.e. where it was located one light 
transit time earlier when photons from the previous pulse were reflected from the satellite 
retroreflector array. However, for the tighter transmitter divergences, the point-ahead can 
sometimes exceed the beam divergence so that the future position of the satellite may fall 
outside the transmitted laser beam if left uncorrected for point-ahead. Thus, to achieve 
maximum illumination of the satellite and the highest count rate on subsequent pulses, we 
must offset the transmitter axis from the “apparent” receiver axis by the angular travel 
accumulated by the satellite during the time it takes a light pulse to travel to and from the 
satellite. In SLR2000, the point-ahead correction is accomplished via two Risley prisms in the 
transmit leg of the transceiver (see Fig. 1). The ray model allows us to compute the proper 
orientation of the two Risleys in real time to produce the appropriate point-ahead as a function 

of the instantaneous azimuth and elevation rates, 
•

α  and 
•

ε .  
 
Let us denote the magnitudes of the angular deflections of the first and second wedges by δ1 
and δ2 and the orientations of the individual prism deflections by the angles ξ1 and ξ2, as 
measured from the positive p-axis as defined previously. Ideally, δ1 = δ2 = δ permits total 
cancellation of the deflections when the wedges are oppositely aligned, but we are allowing 
for some manufacturing error in the prisms. The beam deflection is in the direction of the 
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thickest part of the prism and has a magnitude δ = (n-1)θ  where  n is the glass index of 
refraction and θ is the wedge angle. The ray matrix formulation provides the following 
relationship between the ray angle out of the Risley prisms (left-most vector) and the 
transmitter point ahead in azimuth and elevation space  (right-most vector)  
 

 
where mT = 30.48 is the total post-Risley magnification of the transmitter beam and τr is the 
roundtrip time of flight to the satellite. The latter provides two equations for the two 
unknowns, ξ1 and ξ2, from which we can obtain the following sequential solution  

 

ξξξ ∆+= 12  
 
where the second and third equations unambiguously define the orientation of the first prism. 
 
CONTROLLING TRANSMITTER BEAM DIVERGENCE  
 
Signal count rates and orbital time bias estimates vary widely over the range of satellite 
altitudes. In order to obtain an acceptable photon count rate for the higher satellites (e.g. 
LAGEOS, ETALON, GPS) while still meeting eye safety requirements at the telescope exit 
aperture, we must tightly control the SLR2000 transmit beam diameter (ω = 36 cm) and 
divergence half angle (θt = 4.3 arcsec).  For lower satellites, the angular uncertainty of the 
satellite position and the signal count rates are both relatively high. Therefore, although it may 
be helpful to relax the beam divergence half angle to as much as 17 arcsec, the transmitter 
spot radius must be kept relatively constant at about ω = a/1.12 = 18 cm where a = 20 cm is 
the telescope primary radius [Klein and Degnan, TBD] to maintain eye safety and control 
vignetting losses. Transmitter beam size and divergence at the telescope exit window are 
controlled in SLR2000 by a commercial Special Optics beam expander in the transmitter path 
as in Fig. 1. 
 
 For real time beam control, the ray model relates the desired quasi-Gaussian transmitter beam 
parameters at the telescope exit aperture to the corresponding parameters at the output lens of 
the beam expander. We can represent the Gaussian beam at any point z in the propagation 
path by the complex “q-parameter” defined by  
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where λ = 532 nm is the laser wavelength and R(z) and ω(z) are the phasefront radius of 
curvature and the Gaussian beam radius respectively. At any subsequent point in the path, the 
q-parameter is given by  
  

( )
)(

)(1

0

0

zq
B

A

zq
D

C

zq +

+
=   ( )

DC
BA

zzM =0,  

 
where M(z, z0) is the ray matrix which propagates the rays between the two points in the 
propagation path. The ray model provides the following two expressions for the beam 
diameter in the telescope window 
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and the far-field beam divergence half angle 
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where 48.30=Tm  is again the total post-Risley magnification of the transmitter beam, dT = 
0.033 m, and R0 =R(z0) and ω0 = ω(z0) are the phase front curvature and beam radius at the 
output of the transmitter beam expander. The approximations hold for 1/ 0

2
0 >>Rλπω  where 

the beam divergence is purposefully set well beyond the diffraction limit of the large exit 
beam, i.e. θmin = 0.2 arcsec. The latter two approximate equations can be solved for the 
required Gaussian beam properties out of the transmitter magnifier, i.e  
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where, for a divergence half-angle range of 20 µrad <θt < 80 µrad,  2.4 m < R0 < 9.6 m. The 
latter values for ω0 and R0 are produced by manipulating two lens positions in the magnifier. 
 
 
RECEIVER SPATIAL FIELD OF VIEW  
 
A changing beam divergence must be accompanied by a corresponding change in the receiver 
FOV to avoid missing possible satellite returns. The ray model allows us to compute the 
diameter of the spatial filter pinhole as a function of the full receiver FOV. The aperture 



diameter, Da,  is adjusted by means of a computer-controlled stepper motor to match or 
slightly exceed the transmitter beam divergence discussed previously according to the 
equation 

 
SPECTRAL BANDWIDTH 
 
The spectral bandwidth is controlled by a translation stage perpendicular to the optical path, 
which presently inserts one of the following into the receiver path: an open aperture (night), a 
1 nm filter (twilight), or a 0.2 nm (daylight) filter. The wedge in these filters must be 
compensated at the arcsecond level to avoid introducing angular biases and severe vignetting 
at the spatial field stop. 
 
SUMMARY 
 
To summarize, the 2-D ray matrix approach provides us with the mathematical tools to 
calculate in real time: 

• The scale factor and angular rotation for converting star image offsets from the CCD 
camera center to azimuth and elevation biases 

• The scale factor and angular rotation for converting quadrant centroid position to 
satellite pointing correction in azimuth-elevation space 

• Transmitter point ahead as a function of round trip time-of-flight and the instantaneous 
azimuthal and elevation angular rates 

• Iris diameter (spatial filter) setting for a given receiver FOV  
• Transmitter beam size and divergence at the telescope exit aperture as a function of 

transmit telescope lens spacings 
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